• Title/Summary/Keyword: Flow angle

Search Result 2,907, Processing Time 0.03 seconds

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

Stall Critical Flow Angle in a Vaneless Diffuser of a Centrifugal Compressor (베인없는 디퓨저에서의 스톨 임계 유동각에 관한 연구)

  • Kang Jeong-Seek;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.611-614
    • /
    • 2002
  • Rotating stall in vaneless diffusers of centrifugal compressor occurs in the diffuser wall due to flow separation at large inlet flow angle. For this reason, the critical inlet flow angles are suggested by several researchers. Beyond this critical angle, flow separates in the diffuser, and develops into rotating stall. This paper studied this critical flow angle. Rotating stall is measured through eight fast-response pressure transducers which are equally spaced around the circumference at the inlet and exit of a vaneless diffuser. Experiments are done from 20000rpm to 60000rpm for the diffuser stall. Two-cell structure which rotates at $6{\~}l0{\%}$ of impeller speed is fully developed at $20000{\~}40000rpm$, and three-cell structure which rotates at $7{\~}9{\%}$ of impeller speed is fully developed at $50000{\~}60000rpm$. This paper shows that the critical inlet flow angle is not constant but related with tip speed of impeller. As tip speed increases, so does the critical inlet flow angle.

  • PDF

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades (피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구)

  • Chang, Taek-Soon;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 2009
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}$, $-16^{\circ}$, $-21^{\circ}$, $-26^{\circ}$, $-31^{\circ}$ and $-36^{\circ}$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}$ has been selected to get largest flow rate at backward flow situation.

  • PDF

An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades (피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구)

  • Chang, Taek-Soon;Hur, Jin-Huek;Moon, Seung-Jae;Lee, Jae-Heon;You, Ho-Sun;Im, Yun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.145-150
    • /
    • 2008
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}C$, $-16^{\circ}C$, $-21^{\circ}C$, $-26^{\circ}C$, $-31^{\circ}C$ and $-36^{\circ}C$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}C$ has been selected to get largest flow rate at backward flow situation.

  • PDF

Development of five-hole probe nulling method reliable in complex flow field (복잡한 유동장에서도 신뢰성 있는 5공프로브 널링기법의 개발)

  • Kim, Jin-Gwon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1449-1457
    • /
    • 1997
  • Since a non-nulling method of five-hole probes is valid only when the flow angle is within the calibrated angle range, it can not be used in a complex flow field. Full angle range pressure coefficient maps show that widely used nulling methods do not guarantee correct alignment of the probe with the flow direction in the unknown complex flow field. Zone decision method and features of zone map were studied by investigating the full angle range pressure coefficient maps. A reliable and efficient new nulling algorithm using zone decision by pressure ordering is proposed and verified. Since the zone decision method by pressure ordering can decide whether the flow is within the calibration angle range or not, it is useful in wide angle nonnulling methods, too.

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.