• Title/Summary/Keyword: Flow Structures

Search Result 2,218, Processing Time 0.035 seconds

Integration Model for Urban Flood Inundation Linked with Underground Space Flood Analysis Model (지하공간 침수해석모형과 연계한 도시침수해석 통합모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.313-324
    • /
    • 2007
  • An irregular cell-based numerical model was developed to analyze underground space flooding. In this model, the flow characteristics in underground space were computed by link-node system. Also, the model can simulate the underground flood flow related to the influence of stairs and wall-structures. Empirical discharge formula were introduced to analyze weir-type flow for shopping mall, and channel-type flow for subway railroad respectively. The simulated results matched in reasonable range compared with the observed depth. The dual-drainage inundation analysis model and the underground space flood analysis model were integrated using visual basic application of ArcGIS system. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

Effects of Curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems (배관의 형상 및 내부유체 유동이 배관계의 진동특성에 미치는 영향)

  • Choi, Myung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Vibrational characteristics of curved pipe structures are investigated with respect to the change of inside flow velocities. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the frequency equation for curved pipe structures. When the initial tension is neglected in cured pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies take place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial force due to the velocity and the pressure of the fluid flow from the equilibrium. The force should be included in the equation of motion of the systems to get more accurate natural frequencies. The mechanical properties like stiffness or the location of pipe support need to be changed to avoid resonance. The natural frequencies are to be isolated from the frequency range of dominant vibration modes. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies.

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite (화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화)

  • Kim, Hye-gyu;Ji, Wooseok;Kwon, Hyang Joo;Yoon, Sungtae;Kim, Jung-il
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.

Experimental study on flow characteristics of downburst-like wind over the 3D hill using the wall jet and the impinging jet models

  • Bowen Yan;Kaiyan Xie;Xu Cheng;Chenyan Ma;Xiao Li;Zhitao Yan
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.141-161
    • /
    • 2024
  • Engineering structures often suffer significant damage in the horizontal outflow region of downburst. The wall jet model, which simplifies the simulation device by only modeling the horizontal outflow region of downburst, has been widely employed to study downburst flow characteristics. However, research on downburst wind fields over hilly terrain using the wall jet model is limited, and the relationship between the downburst wind fields generated by wall jet and impinging jet remains unclear. This study investigates the flow characteristics of downburst-like wind over a 3D ideal hill model using wind tunnel tests with the wall jet and impinging jet models. The effects of hill height, slope, shape, and radial position on the speed-up ratio are examined using the wall jet flow. The results indicate that slope and radial position significantly affect the speed-up ratio, while hill height have a slight impact and shape have a minimal impact. Additionally, this study investigates the wind field characteristics over flat terrain using the impinging jet, and investigated the connection between the impinging jet model and the wall jet. Based on this connection, a comparison of the downburst-like flow characteristics over the same 3D ideal hill using the wall jet and impinging jet models is conducted, which further validates the reliability of the wall jet model for studying downburst flow characteristics over hilly terrain.

The Experimental Study for Variance of Sediment Volume Concentration of Debris Flow due to Damped Structures (감쇠 구조물에 의한 토석류 토사체적 농도 변화에 관한 실험적 연구)

  • Youngdo Choi;Sungduk Kim;Hojin Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • The purpose of this study is an experimental research to investigate the effectiveness of debris flow reduction structures when a debris flow disaster occurs on a steep slope. The control structure for debris flow took the form of baffle, and the soil deposition area and soil runout distance due to debris flow from the downstream were investigated according to the installation number of baffle and each specification. As the slope of the channel became steeper, the sediment deposition area and runout distance increased, and as the sediment volume concentration decreased, the sediment deposition area and runout distance increased. When the sediment concentration was low, differences appeared depending on the slope of the channel because the debris flow had a high liquid content. Overall, the larger the sediment volume concentration, the greater the decrease in sediment deposition area and soil runout distance. As the number of baffles increases, the soil deposition area and runout decrease, showing that the baffles have the ability to control debris flows. The results of this research will provide good information when installing attenuation or control structures when sediment disasters occur in steep slopes.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.