• Title/Summary/Keyword: Flow Properties

Search Result 3,762, Processing Time 0.033 seconds

Physical properties of composite resins for dental restorative (치과 수복재용 복합레진의 물리적 특성에 대한 연구)

  • Kim, Ji Yeob;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.35-39
    • /
    • 2015
  • One of the purposes of the study was to investigate and compare the physical properties(depth of light cure, degree of conversion, water absorption) of 4 kinds of composit resins prepared in this lab; Bis-GMA based, Bis-EMA based, Bis-GMA/UDMA based, and Bis-EMA/UDMA based composit. Another aim was to compare the physical properties of the composit resins with those of the commercialized products(Charmfil flow(Denkist), Quadrant flow(CAVEX)) in market. All of the composit resins and the commercialized products showed almost same values of the physical properties. It was found that all of the composit resins prepared in this lab satisfied the physical properties specified in ISO 4049.

  • PDF

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.

Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water

  • Yoon, Seung-No;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.73-77
    • /
    • 2016
  • Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G') value, while that with thickener B showed a lower G'. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing.

The Experience Study on the Floating Properties of High Flow Concrete on volum of Coarse Aggregate used Admixture (굵은골재 체적에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Ho-So;Baek, Chul-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • There are many factors that affect on the flowing properties of high flowing concrete(HFC), which are fluidity, compactibility, non-segregation ability and fillingability. And because the aggregate which is one of the factors occupies high volume in concrete, it has a much effect on the properties of high flowing concrete according to its size, quality and quantity etc. This is an experimental study to analyze the effect of admixture and volume of coarse aggregate in concrete on the flowing properties of high flowing concrete. For this purpose, the kinds of admixture are fly-ash and blast furnace slag. Also volume of coarse aggregate in concrete are 280, 290, 300, 310, 320 $(\ell/m^3)$. The test of flowablity properties is slump-flow, Air content, V-lot, L-Flow. According to test results, it was found that the compactibility of HFC is more superior to use blast furnace slag than other, and according .to kind of admixture, most compatible volume of coarse are different. Also when used blast furnace slag, the volume of coarse are increased than used fly-ash.

  • PDF

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 동적 점탄성)

  • Song, Ki-Won;Bae, Jun-Woong;Chang, Gap-Shik;Noh, Dong-Hyun;Park, Yung-Hoon;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

Electrical and optical properties of AZO films sputtered in $Ar:H_2$ gas RF magnetron sputtering system

  • Hwang, Seung-Taek;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.192-192
    • /
    • 2009
  • AZO films were prepared by $Ar:H_2$ gas RF magnetron sputtering system with a AZO (2wt% $Al_2O_3$) ceramic target at a low temperature of $100^{\circ}C$. To investigate the influence of $H_2$ flow ratio on the properties of AZO films, $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films deposited with 1% $H_2$ addition showed electrical properties with a resistivity of $5.06{\times}10^{-3}{\Omega}cm$. The spectrophotometer-measurements showed the transmittance of 86.5% was obtained by the film deposited with $H_2$ flow ratio of 1% in the range of 940nm for GaAs/GaAlAs LED.

  • PDF

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung;Park, Kyoungsoo;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.65-74
    • /
    • 2016
  • During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF