• Title/Summary/Keyword: Flow Properties

Search Result 3,774, Processing Time 0.027 seconds

Properties of TiO$_2$ Thin Film Deposited by LPMOCVD (LPMOCVD 법으로 증착된 TiO$_2$ 박막의 특성)

  • 이하용;박용환;고경현;박정훈;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.901-908
    • /
    • 1999
  • Effects of LPMOCVD process parameters on the properties of TiO2 thin film were investigated. Depositions were made in the range of temperature 300-67$0^{\circ}C$ with various TTIP(Titanium Tetraisopropoxide) concentrations by contrlling bubbler temperature(40-8$0^{\circ}C$) and/or flow rate(30-90 sccm). Post annealing treatments were carried out at 500-80$0^{\circ}C$ range in the air. Films deposited at 40$0^{\circ}C$ have denser morphology than those of films deposited at 50$0^{\circ}C$ and $600^{\circ}C$ due to slower deposition rate. Bubbler temperature can affect on the deposition rate in mass transfer controlled regime such as 50$0^{\circ}C$ or higher but not below 50$0^{\circ}C$ where surface reaction rate becomes important. On the contrary for films deposited above 50$0^{\circ}C$ flow rate can raise deposition rate but eventually saturate it at the 50 sccm and above due to retarded adhesion of decomposed species. But for films deposited at 40$0^{\circ}C$ deposition rate increases stadily with flow rate. As the film becomes more porous A(200) texture can not be developed and AnataselongrightarrowRutile transition kinetics increases.

  • PDF

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

An Experimental Investigation of Heat Transfer in Forced Convective Boiling of R 134a, R 123 and R 134a/R 123 in a Horizontal Tube

  • Lim, Tae-Woo;Kim, Jun-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.513-525
    • /
    • 2004
  • This paper reports an experimental study on flow boiling of pure refrigerants R l34a and R l23 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10㎜ located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa in the heat flux ranges of 5-50㎾/㎡, vapor quality 0-100 percent and mass velocity of 150-600㎏/㎡s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen's superposition model, a new correlation is presented for heat transfer coefficients of mixture.

Study on the Rheological Properties of the Lactic acid Fermented Milk (유산균배양액의 유체역학적 성질에 관한 연구)

  • 정후길;강국희
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 1990
  • As a link in the studies on the extracellular polysaccharide by lactic acid bacteria, the experiment was conducted to investigate the viscosity variations and rheological properties of 10% reconstituted skim milk and 12% reconstituted whole milk, respectively. 1. 10% reconstituted skim milk cultured by Str. thrennophilus 510 showed strong flow property of pseudoplastic fluid depending upon the production of exopolysaccharide. And the viscosity reached the highest value within 14% concentration. 2. 12% reconstituted whole milk cultured by lactic acid bacteria indicated flow property of pseudoplastic fluid. But there was a big difference in the viscosity as compared with 10% skim milk. 3. The maximum consistency index (k) and the minimum flow behavior index (n) of the fermented milk by Str. thermophilus 510 were 43 and 0.09, respectively. They were 35 and 0.09, in case of Lb. bulgaricus.

  • PDF

The resistivity properties of tungsten nitride films deposited by RF sputtering (RF 스퍼터링 증착에 의한 질화 텅스텐 박막의 비저항 특성)

  • 이우선;정용호;이상일
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • We presented Tungsten and Tungsten Nitride thin films deposited by RF and DC sputtering. It deposited at various conditions that determining the resistivity and sheet resistivity by stabilizing the basic theory. We investigated properties of the resistivity and sheet resistivity of these films under various conditions, temperature of substrate, flow rate of the argon gas and content of nitrogen from nitrogen-argon mixtures. As the temperature of substrate increased and the flow rate of the argon gas decreased, the resistivities of these films reduced by structural transformation. We found that these resistivities were depend on the temperature of substrate, flow rate and electric power. Very highly resistive tungsten films obtained at 10W RF power. On the contrary, we found that films deposited by DC sputtering, from which very lowly resistive tungsten films were obtained. Tungsten nitride thin films deposited by reactive DC sputtering and the resistivities of these films increased as the content of nitrogen gas increased from nitrogen-argon mixture. And also we found the results show very good agreement, compared with experimental data.

  • PDF

Engineering Properties of Flowable Composite Soil with Waste Tire and Bottom Ash (폐타이어-저회가 혼합된 유동성 복합지반재료의 공학적 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-58
    • /
    • 2010
  • This study investigated the engineering properties of waste tire powder-bottom ash added composite soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared using 5 different percentages of waste tire powder content(0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil), three different percentages of bottom ash content (0%, 50%, and 100% by weight of the dry dredged soil), and three different particle sizes of waste tire powder (0.1~2 mm, 0.9~5 mm, and 2~10 mm). Several series of unconfined compression tests, direct shear tests, and flow tests were conducted. The experimental results indicated that the waste tire powder content, particle size of waste tire powder, and bottom ash content influenced the strength and stress-strain behavior of the composite soil. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content.

Optical Properties of Transparent Electrode ZnO Thin Film Grown on Carbon Doped Silicon Oxide Film (탄소주입 실리콘 산화막 위에 성장한 투명전극 ZnO 박막의 광학적 특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.13-16
    • /
    • 2012
  • Zinc oxide (ZnO) films were deposited by an RF magnetron sputtering system with the RF power of 200W and 300W and flow rate of oxygen gases of 20 and 30 sccm, in order to research the growth of ZnO on carbon doped silicon oxide (SiOC) thin film. The reflectance of SiOC film on Si film deposited by the sputtering decreased with increasing the oxygen flow rate in the range of long wavelength. In comparison between ZnO/Si and ZnO/SiOC/Si thin film, the reflectance of ZnO/SiOC/Si film was inversed that of ZnO/Si film in the rage of 200~1000 nm. The transmittance of ZnO film increased with increasing the oxygen gas flow rate because of the transition from conduction band to oxygen interstitial band due to the oxygen interstitial (Oi) sites. The low reflectance and the high transmittance of ZnO film was suitable properties to use for the front electrode in the display or solar cell.

Study on the Performance Evaluation of CS-H Wall composed of Steel Fiber (강섬유를 이용한 CS-H 벽체의 성능 평가에 관한 연구)

  • YU, Nam-Jae;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2017
  • In this study, CS-H walls with large stiffness were constructed using geosythetics for use in excavation at a depth of 30 m or more in Korea, and in order to construct the CS-H wall suitable for the site conditions, the formulation was examined according to the change in the mixing ratio of the geosythetics and the slump value (slump flow) and as a result, in the target slump 180 mm and the slump flow 500 mm, the formulation was confirmed to meet the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus as well as the economic efficiency. However, in the slump flow 600 mm, the result indicated that the formulation was inappropriate in the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus.

Ceramic injection molding of the watch case composed by zirconia$(ZrO_2)$ powder (지르코니아$(ZrO_2)$ 분말을 이용한 시계케이스의 세라믹 사출성형)

  • Kwak T.S.;Shin H.Y.;Lim J.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.275-278
    • /
    • 2005
  • This study has focused on manufacturing technique of powder injection molding of watch case which made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould and defects as weld line. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results far flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.