• 제목/요약/키워드: Flow Phenomena

검색결과 1,565건 처리시간 0.026초

반구형 소형 간극 내에서의 냉각과정에 관한 실험적 연구 (An Experimental Study on the Quenching Phenomena of Hemispherical Downward Facing Convex Surfaces with Narrow Gaps)

  • 하광순;박래준;김상백;조영로;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.447-452
    • /
    • 2001
  • Quenching phenomena of hemispherical downward facing convex surfaces with narrow gaps have been investigated experimentally. Experiments employed test sections having 1 and 2 mm in gap thickness and 1 atm in system pressure. From interpretations of the temperature and the heat flux history, it was found that the flooding inside the gap was restricted by CCFL phenomena and quenching process was propagated from lower to upper region of the internal copper shell. The ratio of the maximum heat fluxes at 1 mm to 2mm in gap thickness was the almost same that obtained by steady state experiments. The quenching scenario of the hemispherical downward facing surface with narrow gap has been suggested.

  • PDF

유량과 벽면횡단압력의 변화에 의한 유연한 관의 압착현상 (Collapsible Phenomena in the Flexible Tubes due to the Flow Rate and Transmural Pressure Changes)

  • 조민태;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.377-380
    • /
    • 2000
  • The collapsible phenomena of the circular tubes due to the excessive transmural pressure are investigated experimentally. Collapsible tubes are installed in the test section where the external pressure is applied to the test tubes by applying the hydrostatic head. The collapsible circular tubes are made of rubber, whose diameters are 6 and 4.2 mm, respectively. The hydrostatic water head of the upper reservoir is applied to the test section. Pressures at the upstream and downstream sides are measured by the pressure transducers. The collapsible phenomena are observed as the transmural pressure Increases, and also the flutter phenomenon occurs due to the critical transmural pressure.

  • PDF

고상입자의 분리현상을 고려한 Semi-Solid 알루미늄재료의 변형해석 (Deformation Analysis of Semi-Solid Aluminum Material Considering Seperation Phenomena of Solid Particles)

  • 최진석;강충길;김기훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.98-105
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can very from dendritic to globular. The estimation of behaviour characteristic in the compression simulation with seim-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for compression process is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process considering soldification phenomena is performed to the isothermal conditions of two dimensional problems. To analysis of compression process by using semi-solid materials, a new stress-strain relationship is described, and compression analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for compression force and ram displacement will be compared to experimental data.

  • PDF

Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field

  • Gharsseldien, Z.M.;Awaad, A.S.
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.77-86
    • /
    • 2022
  • This paper studied the peristaltic transport of upper convected Maxwell nanofluid through a porous medium in a heated (isothermal) symmetric vertical channel. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. These phenomena are modeled mathematically by a differential equations system by taking low Reynolds number and long-wavelength approximation, the yield differential equations have solved analytically. A suggested new technique to display and discuss the trapping phenomenon is presented. We discussed and analyzed the pumping characteristics, heat function, flow velocity and trapping phenomena which were illustrated graphically through a set of figures for various values of parameters of the problem. The numerical results show that, there are remarkable effects on the vertical velocity, pressure gradient and trapping phenomena with the thermal change of the walls.

마이크로 채널 충전 과정의 유동 현상 (II) - 수치 해석 - (Flow Phenomena in Micro-channel Filling Process (II) - Numerical Analysis -)

  • 김동성;이광철;권태헌;이승섭
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.657-665
    • /
    • 2003
  • Several interesting results were obtained from the flow visualization experiment in the accompanying paper, Part I. in the present study, Part II, a numerical study has been carried out to explain the detailed flow phenomena in micro-channel filling process. Hele-Shaw flow approximation was applied to the micro-channel geometry based on the small characteristic length. And surface tension effect has been introduced on the flow front as the boundary condition with the help of a dynamic contact angle concept between the melt front and the wall. A dimensional analysis for numerical results was carried out and a strong relationship between dimensionless pressure and Capillary number is obtained. The numerical analysis results are compared with the flow visualization experimental observations. And the numerical system developed in the present study seems to be able to predict the interesting micro-channel filling flow characteristics observed from experiments.

초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구 (Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle)

  • 남종순;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.206-212
    • /
    • 2011
  • 유체 시스템에서 히스테리시스 현상은 다양한 산업 및 공학의 응용 분야에서 발생하며, 주로 압력비의 시간변화 과정에서 발생한다. 초음속 노즐에서 충격파를 포함한 유동장은 이러한 히스테리시스 현상의 지배적인 영향을 받는다. 그러나 이와 관련된 유동의 물리적 현상에 대해서는 연구가 미비한 실정이다. 본 연구에서는 노즐구동압력비의 변화 과정 동안 초음속 노즐의 유동을 파악하기 위해 실험적 연구를 수행하였다. 순간 표면압력을 측정하기 위하여 다수의 압력변환기를 사용하였으며, 유동장의 가시화는 나노스파크 광원을 가지는 쉴리렌 가시화 장치를 이용하였다. 본 연구로부터, 히스테리시스 현상은 노즐의 기하학적 형상뿐만 아니라 압력비의 시간변화에 크게 의존하였다.

  • PDF

희박기체 영역에서 미끄럼 경계조건을 적용한 쐐기 형상 주위의 유동 해석 (NUMERICAL STUDY OF WEDGE FLOW IN RAREFIED GAS FLOW REGIME USING A SLIP BOUNDARY CONDITION)

  • 최영재;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.40-48
    • /
    • 2014
  • For rarefied gas flow regimes, physical phenomena such as velocity slip and temperature jump occur on the solid body surface. To predict these phenomena accurately, either the Navier-Stokes solver with a slip boundary condition or the direct simulation Monte Carlo method should be used. In the present study, flow simulations of a wedge were conducted in Mach-10 flow of argon gas for several different flow regimes using a two-dimensional Navier-Stokes solver with the Maxwell slip boundary condition. The results of the simulations were compared with those of the direct simulation Monte Carlo method to assess the present method. It was found that the values of the velocity slip and the temperature jump predicted increase as the Knudsen number increases. Also, the results are comparatively reasonable up to the Knudsen number of 0.05.

TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명 (A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity)

  • 엄용균;유재봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구 (Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique)

  • 김동현;장태진;권혁준;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

마이크로 채널 충전 과정의 유동 현상(I) - 유동 가시화 실험 - (Flow Phenomena in Micro-Channel Filling Process (I) - Flow Visualization Experiment -)

  • 김동성;이광철;권태헌;이승섭
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1982-1988
    • /
    • 2002
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in micro-system industries, in particular the bio-application industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, Part 1, an experimental investigation has been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness (40um,30um and 2011m) were fabricated using SU-8 on silicon wafer substrate. And a flow visualization system was developed to observe the filling flow into the micro-channels. Experimental flow observations are extensively made to find the effects of pressure, inertia force, viscous force and surface tension. A dimensional analysis for experimental results was carried out and several relationships A dimensionless parameters are obtained.