Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.1.077

Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field  

Gharsseldien, Z.M. (Department of Mathematics, Faculty of Science (Men), Al-Azhar University)
Awaad, A.S. (Department of Mathematics, College of Arts and Science, Prince Sattam Bin Abdul-Aziz University)
Publication Information
Advances in nano research / v.13, no.1, 2022 , pp. 77-86 More about this Journal
Abstract
This paper studied the peristaltic transport of upper convected Maxwell nanofluid through a porous medium in a heated (isothermal) symmetric vertical channel. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. These phenomena are modeled mathematically by a differential equations system by taking low Reynolds number and long-wavelength approximation, the yield differential equations have solved analytically. A suggested new technique to display and discuss the trapping phenomenon is presented. We discussed and analyzed the pumping characteristics, heat function, flow velocity and trapping phenomena which were illustrated graphically through a set of figures for various values of parameters of the problem. The numerical results show that, there are remarkable effects on the vertical velocity, pressure gradient and trapping phenomena with the thermal change of the walls.
Keywords
heated channel; magnetic field; peristalsis; upper-convected maxwell nanofluid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S. and Seyyedi, S.M. (2012), "Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field", Int. Commun. Heat Mass Transf., 39(9), 1435-1443. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026.   DOI
2 Sheikholeslami, M. and Ganji, D.D. (2017), Applications of Nanofluid for Heat Transfer Enhancement, Elsevier Inc, New York, U.S.A.
3 Timofeeva, E.V., Routbort, J.L. and Singh, D. (2009), "Particle shape effects on thermophysical properties of alumina nanofluids", J. Appl. Phys., 106(1), 014304. https://doi.org/10.1063/1.3155999.   DOI
4 Sadaf, H., Akbar, M.U. and Nadeem, S. (2018), "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus", Math. Comput. Simul., 148, 16-36. https://doi.org/10.1016/j.matcom.2017.12.009.   DOI
5 Sayed, H.M., Aly, E.H. and Vajravelu, K. (2016), "Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel", Alexandria Eng. J., 55(3), 2209-2220. https://doi.org/10.1016/j.aej.2016.04.041.   DOI
6 Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021), "Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model", Adv. Nano Res., 10(3), 221-234. https://doi.org/10.12989/anr.2021.10.3.221.   DOI
7 Sobamowo, M. (2018), "Slip analysis of magnetohydrodynamics flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium", Aeronaut. Aerosp. Open Access J., 2(5). https://doi.org/10.15406/aaoaj.2018.02.00065.   DOI
8 Turns, S. and Kraige, D. (2007), Property Tables for Thermal Fluids Engineering, Cambridge University Press, Campridge, U.K.
9 Hamilton, R.L. and, Crosser, O.K. (1962), "Thermal conductivity of heterogeneous two-component systems", Ind. Eng. Chem. Fundam., 1(3), 187-191. https://doi.org/10.1021/i160003a005.   DOI
10 Mohamad, R.B., Kandasamy, R. and Muhaimin, I. (2013), "Enhance of heat transfer on unsteady Hiemenz flow of nanofluid over a porous wedge with heat source/sink due to solar energy radiation with variable stream condition", Heat Mass Transf., 49(9), 1261-1269. https://doi.org/10.1007/s00231-013-1163-6.   DOI
11 Amin, M.T. and Alazba, A.A. (2014), "A review of nanomaterials based membranes for removal of contaminants from polluted waters", Membr. Water Treat., 5(2), 123-146 https://doi.org/10.12989/mwt.2014.5.2.123.   DOI
12 Abbasi, F.M., Hayat, T. and Ahmad, B. (2015), "Peristaltic transport of copper-water nanofluid saturating porous medium", Physica E, 67, 47-53. https://doi.org/10.1016/j.physe.2014.11.002.   DOI
13 Reddy, M.G. and Makinde, O.D. (2016), "Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel", J. Mol. Liq., 223, 1242-1248. https://doi.org/10.1016/j.molliq.2016.09.080.   DOI
14 Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D. and Soleimani, S. (2014), "Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field", J. Mol. Liq., 193, 174-184. https://doi.org/10.1016/j.molliq.2013.12.023.   DOI
15 Sozen, A., Ozbas, E., Menlik, T., C akir, M.T., Guru, M. and Boran, K. (2014), "Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study", Int. J. Refrig., 44, 73-80. https://doi.org/10.1016/j.ijrefrig.2014.04.018.   DOI
16 Vajravelu, K., Sreenadh, S. and Lakshminarayana, P. (2011), "The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum", Commun. Nonlinear Sci. Numer. Simul., 16(8), 3107-3125. https://doi.org/10.1016/j.cnsns.2010.11.001.   DOI
17 Hayat, T., Aslam, N., Alsaedi, A. and Rafiq, M. (2017), "Numerical study for MHD peristaltic transport of Sisko nanofluid in a curved channel", Int. J. Heat Mass Transf., 109, 1281-1288. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.121.   DOI
18 Hayat, T., Nisar, Z., Yasmin, H. and Alsaedi, A. (2016), "Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation", J. Mol. Liq., 220, 448-453. https://doi.org/10.1016/j.molliq.2016.04.080.   DOI
19 Akbar, N.S., Butt, A.W. and Tripathi, D. (2017), "Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel", Results Phys., 7, 2477-2484. https://doi.org/10.1016/j.rinp.2017.07.019.   DOI
20 Akbar, N.S., Nadeem, S., Hayat, T. and Hendi, A.A. (2012), "Peristaltic flow of a nanofluid in a non-uniform tube", Heat Mass Transf., 48(3), 451-459. https://doi.org/10.1007/s00231-011-0892-7.   DOI
21 Buschmann, M.H. and Franzke, U. (2014), "Improvement of thermosyphon performance by employing nanofluid", Int. J. Refrig., 40, 416-428. https://doi.org/10.1016/j.ijrefrig.2013.11.022.   DOI
22 Chen, T., Kim, J. and Cho, H. (2014), "Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid", Int. J. Refrig., 48, 233-244. https://doi.org/10.1016/j.ijrefrig.2014.08.013.   DOI
23 Cheng, C.H., Kou, H. Sen and Huang, W.H. (1990), "Flow reversal and heat transfer of fully developed mixed convection in vertical channels", J. Thermophys. Heat Transf., 4(3), 375-383. https://doi.org/10.2514/3.190.   DOI
24 Elmaboud, Y.A., Mekheimer, K.S. and Emam, T.G. (2019), "Numerical examination of gold nanoparticles as a drug carrier on peristaltic blood flow through physiological vessels: Cancer therapy treatment", Bionanoscience, 9(4), 952-965. https://doi.org/10.1007/s12668-019-00639-7.   DOI
25 Abd Elmaboud, Y. (2018), "Two layers of immiscible fluids in a vertical semi-corrugated channel with heat transfer: Impact of nanoparticles", Results Phys., 9, 1643-1655. https://doi.org/10.1016/j.rinp.2018.05.008.   DOI
26 Ghasemi, S.E., Vatani, M., Hatami, M. and Ganji, D.D. (2016), "Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems", J. Mol. Liq., 215, 88-97. https://doi.org/10.1016/j.molliq.2015.12.001.   DOI
27 Boulama, K. and Galanis, N. (2004), "Analytical solution for fully developed mixed convection between parallel vertical plates with heat and mass transfer", J. Heat Transfer, 126(3), 381-388. https://doi.org/10.1115/1.1737774.   DOI
28 Kot, M.A.E.L. and Elmaboud, Y.A.B.D. (2021), "Hybrid nanofluid flows through a vertical diseased coronary artery with heat transfer", J. Mech. Med. Biol., 21(2). https://doi.org/10.1142/S0219519421500123.   DOI
29 Mosayebidorcheh, S. and Hatami, M. (2018), "Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel)", Int. J. Heat Mass Transf., 126, 790-799. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.080.   DOI
30 Noreen, S. (2018), "Peristaltically assisted nanofluid transport in an asymmetric channel", Karbala Int. J. Mod. Sci., 4(1), 35-49. https://doi.org/10.1016/j.kijoms.2017.10.005.   DOI
31 Shah, N.A., Animasaun, I.L., Ibraheem, R.O., Babatunde, H.A., Sandeep, N. and Pop, I. (2018), "Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces", J. Mol. Liq., 249, 980-990. https://doi.org/10.1016/j.molliq.2017.11.042.   DOI
32 Ibrahim, M.G., Hasona, W.M. and ElShekhipy, A.A. (2019), "Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of synovial nanofluid: Applications to rheumatoid arthritis treatment", Comput. Methods Programs Biomed., 170, 39-52. https://doi.org/10.1016/j.cmpb.2019.01.001.   DOI
33 Prakash, J., Siva, E.P., Tripathi, D., Kuharat, S. and Beg, O.A. (2019), "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump", Renew. Energy, 133, 1308-1326. https://doi.org/10.1016/j.renene.2018.08.096.   DOI
34 Rachid, H. (2015), "Effects of heat transfer and an endoscope on peristaltic flow of a fractional maxwell fluid in a vertical tube", Abstr. Appl. Anal., 360918. https://doi.org/10.1155/2015/360918.   DOI