DOI QR코드

DOI QR Code

Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field

  • Gharsseldien, Z.M. (Department of Mathematics, Faculty of Science (Men), Al-Azhar University) ;
  • Awaad, A.S. (Department of Mathematics, College of Arts and Science, Prince Sattam Bin Abdul-Aziz University)
  • Received : 2021.04.25
  • Accepted : 2022.05.15
  • Published : 2022.07.25

Abstract

This paper studied the peristaltic transport of upper convected Maxwell nanofluid through a porous medium in a heated (isothermal) symmetric vertical channel. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. These phenomena are modeled mathematically by a differential equations system by taking low Reynolds number and long-wavelength approximation, the yield differential equations have solved analytically. A suggested new technique to display and discuss the trapping phenomenon is presented. We discussed and analyzed the pumping characteristics, heat function, flow velocity and trapping phenomena which were illustrated graphically through a set of figures for various values of parameters of the problem. The numerical results show that, there are remarkable effects on the vertical velocity, pressure gradient and trapping phenomena with the thermal change of the walls.

Keywords

References

  1. Abbasi, F.M., Hayat, T. and Ahmad, B. (2015), "Peristaltic transport of copper-water nanofluid saturating porous medium", Physica E, 67, 47-53. https://doi.org/10.1016/j.physe.2014.11.002.
  2. Abd Elmaboud, Y. (2018), "Two layers of immiscible fluids in a vertical semi-corrugated channel with heat transfer: Impact of nanoparticles", Results Phys., 9, 1643-1655. https://doi.org/10.1016/j.rinp.2018.05.008.
  3. Akbar, N.S., Butt, A.W. and Tripathi, D. (2017), "Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel", Results Phys., 7, 2477-2484. https://doi.org/10.1016/j.rinp.2017.07.019.
  4. Akbar, N.S., Nadeem, S., Hayat, T. and Hendi, A.A. (2012), "Peristaltic flow of a nanofluid in a non-uniform tube", Heat Mass Transf., 48(3), 451-459. https://doi.org/10.1007/s00231-011-0892-7.
  5. Amin, M.T. and Alazba, A.A. (2014), "A review of nanomaterials based membranes for removal of contaminants from polluted waters", Membr. Water Treat., 5(2), 123-146 https://doi.org/10.12989/mwt.2014.5.2.123.
  6. Boulama, K. and Galanis, N. (2004), "Analytical solution for fully developed mixed convection between parallel vertical plates with heat and mass transfer", J. Heat Transfer, 126(3), 381-388. https://doi.org/10.1115/1.1737774.
  7. Buschmann, M.H. and Franzke, U. (2014), "Improvement of thermosyphon performance by employing nanofluid", Int. J. Refrig., 40, 416-428. https://doi.org/10.1016/j.ijrefrig.2013.11.022.
  8. Chen, T., Kim, J. and Cho, H. (2014), "Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid", Int. J. Refrig., 48, 233-244. https://doi.org/10.1016/j.ijrefrig.2014.08.013.
  9. Cheng, C.H., Kou, H. Sen and Huang, W.H. (1990), "Flow reversal and heat transfer of fully developed mixed convection in vertical channels", J. Thermophys. Heat Transf., 4(3), 375-383. https://doi.org/10.2514/3.190.
  10. Elmaboud, Y.A., Mekheimer, K.S. and Emam, T.G. (2019), "Numerical examination of gold nanoparticles as a drug carrier on peristaltic blood flow through physiological vessels: Cancer therapy treatment", Bionanoscience, 9(4), 952-965. https://doi.org/10.1007/s12668-019-00639-7.
  11. Ghasemi, S.E., Vatani, M., Hatami, M. and Ganji, D.D. (2016), "Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems", J. Mol. Liq., 215, 88-97. https://doi.org/10.1016/j.molliq.2015.12.001.
  12. Hamilton, R.L. and, Crosser, O.K. (1962), "Thermal conductivity of heterogeneous two-component systems", Ind. Eng. Chem. Fundam., 1(3), 187-191. https://doi.org/10.1021/i160003a005.
  13. Hayat, T., Aslam, N., Alsaedi, A. and Rafiq, M. (2017), "Numerical study for MHD peristaltic transport of Sisko nanofluid in a curved channel", Int. J. Heat Mass Transf., 109, 1281-1288. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.121.
  14. Hayat, T., Nisar, Z., Yasmin, H. and Alsaedi, A. (2016), "Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation", J. Mol. Liq., 220, 448-453. https://doi.org/10.1016/j.molliq.2016.04.080.
  15. Ibrahim, M.G., Hasona, W.M. and ElShekhipy, A.A. (2019), "Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of synovial nanofluid: Applications to rheumatoid arthritis treatment", Comput. Methods Programs Biomed., 170, 39-52. https://doi.org/10.1016/j.cmpb.2019.01.001.
  16. Kot, M.A.E.L. and Elmaboud, Y.A.B.D. (2021), "Hybrid nanofluid flows through a vertical diseased coronary artery with heat transfer", J. Mech. Med. Biol., 21(2). https://doi.org/10.1142/S0219519421500123.
  17. Mohamad, R.B., Kandasamy, R. and Muhaimin, I. (2013), "Enhance of heat transfer on unsteady Hiemenz flow of nanofluid over a porous wedge with heat source/sink due to solar energy radiation with variable stream condition", Heat Mass Transf., 49(9), 1261-1269. https://doi.org/10.1007/s00231-013-1163-6.
  18. Mosayebidorcheh, S. and Hatami, M. (2018), "Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel)", Int. J. Heat Mass Transf., 126, 790-799. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.080.
  19. Noreen, S. (2018), "Peristaltically assisted nanofluid transport in an asymmetric channel", Karbala Int. J. Mod. Sci., 4(1), 35-49. https://doi.org/10.1016/j.kijoms.2017.10.005.
  20. Prakash, J., Siva, E.P., Tripathi, D., Kuharat, S. and Beg, O.A. (2019), "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump", Renew. Energy, 133, 1308-1326. https://doi.org/10.1016/j.renene.2018.08.096.
  21. Rachid, H. (2015), "Effects of heat transfer and an endoscope on peristaltic flow of a fractional maxwell fluid in a vertical tube", Abstr. Appl. Anal., 360918. https://doi.org/10.1155/2015/360918.
  22. Reddy, M.G. and Makinde, O.D. (2016), "Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel", J. Mol. Liq., 223, 1242-1248. https://doi.org/10.1016/j.molliq.2016.09.080.
  23. Sadaf, H., Akbar, M.U. and Nadeem, S. (2018), "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus", Math. Comput. Simul., 148, 16-36. https://doi.org/10.1016/j.matcom.2017.12.009.
  24. Sayed, H.M., Aly, E.H. and Vajravelu, K. (2016), "Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel", Alexandria Eng. J., 55(3), 2209-2220. https://doi.org/10.1016/j.aej.2016.04.041.
  25. Shah, N.A., Animasaun, I.L., Ibraheem, R.O., Babatunde, H.A., Sandeep, N. and Pop, I. (2018), "Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces", J. Mol. Liq., 249, 980-990. https://doi.org/10.1016/j.molliq.2017.11.042.
  26. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021), "Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model", Adv. Nano Res., 10(3), 221-234. https://doi.org/10.12989/anr.2021.10.3.221.
  27. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S. and Seyyedi, S.M. (2012), "Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field", Int. Commun. Heat Mass Transf., 39(9), 1435-1443. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.026.
  28. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D. and Soleimani, S. (2014), "Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field", J. Mol. Liq., 193, 174-184. https://doi.org/10.1016/j.molliq.2013.12.023.
  29. Sheikholeslami, M. and Ganji, D.D. (2017), Applications of Nanofluid for Heat Transfer Enhancement, Elsevier Inc, New York, U.S.A.
  30. Sobamowo, M. (2018), "Slip analysis of magnetohydrodynamics flow of an upper-convected Maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium", Aeronaut. Aerosp. Open Access J., 2(5). https://doi.org/10.15406/aaoaj.2018.02.00065.
  31. Sozen, A., Ozbas, E., Menlik, T., C akir, M.T., Guru, M. and Boran, K. (2014), "Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study", Int. J. Refrig., 44, 73-80. https://doi.org/10.1016/j.ijrefrig.2014.04.018.
  32. Timofeeva, E.V., Routbort, J.L. and Singh, D. (2009), "Particle shape effects on thermophysical properties of alumina nanofluids", J. Appl. Phys., 106(1), 014304. https://doi.org/10.1063/1.3155999.
  33. Turns, S. and Kraige, D. (2007), Property Tables for Thermal Fluids Engineering, Cambridge University Press, Campridge, U.K.
  34. Vajravelu, K., Sreenadh, S. and Lakshminarayana, P. (2011), "The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum", Commun. Nonlinear Sci. Numer. Simul., 16(8), 3107-3125. https://doi.org/10.1016/j.cnsns.2010.11.001.