• Title/Summary/Keyword: Flow Network System

Search Result 962, Processing Time 0.038 seconds

Underwater Packet Flow Control for Underwater Networks (수중네트워크를 위한 수중패킷 흐름제어기법)

  • Shin, Soo Young;Park, Soo Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.924-931
    • /
    • 2016
  • In this paper, Various network adaptive MAC scheduling technique is proposed to effectively overcome limits of narrow bandwidth and low transmission speed in underwater. UPFC(Underwater Packet Flow Control) is a technique to reduce both the number of transmission and transmission time using three types (Normal, Blocked, Parallel) of data transmission. In this technique, the load information, in which a transmission node have, is transmitted to destination node using marginal bit in reserved header. Then the transmitted information is referred to determine weighting factor. According to the weighting factor, scheduling is dynamically changed adaptively. The performance of UPFC is analyzed and flow control technique which can be applied to Cluster Based Network and Ad Hoc network as well.

A Study on Transmission System Expansion Planning using Fuzzy Branch and Bound Method

  • Park, Jaeseok;Sungrok Kang;Kim, Hongsik;Seungpil Moon;Lee, Soonyoung;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.121-128
    • /
    • 2002
  • This study proposes a new method for transmission system expansion planning using fuzzy integer programming. It presents stepwise cost characteristics analysis which is a practical condition of an actual system. A branch and bound method which includes the network flow method and the maximum flow - minimum cut set theorem has been used in order to carry out the stepwise cost characteristics analysis. Uncertainties of the permissibility of the construction cost and the lenient reserve rate and load forecasting of expansion planning have been included and also processed using the fuzzy set theory in this study. In order to carry out the latter analysis, the solving procedure is illustrated in detail by the branch and bound method which includes the network flow method and maximum flow-minimum cut set theorem. Finally, case studies on the 21- bus test system show that the algorithm proposed is efficiently applicable to the practical expansion planning of transmission systems in the future.

Calculation of Pressure Profiles in a Molecular Flow Regime using LTSpice IV

  • Choi, Won-Shik;Kang, Kun-Uk;Kim, Se-Hyun;Park, Chongdo
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.67-72
    • /
    • 2016
  • This article describes an electrical network analysis (ENA) method to calculate the pressure distribution of a vacuum system in a molecular flow regime. The vacuum system was modeled using electrical components. For an accurate analysis, a complexly combined pipe model, excluding entrance conductance, was employed and the pressure distribution was simulated using ENA. A vacuum system comprising three vacuum pumps was used for simplicity. In addition, the ENA results were compared with results from finite element analysis (FEA) and experimental measurements. The pressure distribution profiles estimated from ENA, performed using the LTSpice IV software, were in agreement with FEA and experimental results.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • To adequately analyze flows in pipe or duct network system, traditional node-based junction coupling methods require the junction loss which is specified by empirical or analytic correlations. In this paper, a new finite volume junction coupling method using a ghost junction cell is developed by considering the interchange of linear momentum as well as the important wall-effect at junction without requiring any correlation on the junction loss. Also, boundary treatment is modified to preserve the stagnation enthalpy across boundaries, such as pipe-end and the interface between junction and branch. Also, the computational accuracy and efficiency of the Godunov-type finite volume schemes are investigated by tracing the total mechanical energy of rapid transients due to sudden closure of valve at downstream end.

Fan Noise Prediction Method of Air Conditioning and Cooling System (공기조화 및 냉각시스템의 팬 소음예측 기법)

  • Lee, Jin-Young;Lee, Chan;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1318-1320
    • /
    • 2007
  • Fan noise prediction method is presented for air conditioning and/or cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(Flow Network Modeling) with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual noise test results.

  • PDF

A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating (개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구)

  • Hong Seok-Jin;Ryu Seong-Ryong;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.

Development of an integrative cardiovascular system model including cell-system and arterial network (세포-시스템 차원의 혈류역학적 심혈관 시스템 모델의 개발)

  • Shim, Eun-Bo;Jun, Hyung-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.542-546
    • /
    • 2008
  • In this study, we developed a whole cardiovascular system model combined with a Laplace heart based on the numerical cardiac cell model and a detailed arterial network structure. The present model incorporates the Laplace heart model and pulmonary model using the lumped parameter model with the distributed arterial system model. The Laplace heart plays a role of the pump consisted of the atrium and ventricle. We applied a cellular contraction model modulated by calcium concentration and action potential in the single cell. The numerical arterial model is based upon a numerical solution of the one-dimensional momentum equations and continuity equation of flow and vessel wall motion in a geometrically accurate branching network of the arterial system including energy losses at bifurcations. For validation of the present method, the computed pressure waves are compared with the existing experimental observations. Using the cell-system-arterial network combined model, the pathophysiological events from cells to arterial network are delineated.

  • PDF

Synchronization of Network Interfaces in System Area Networks (시스템 에어리어 네트?에서의 동기화 기법)

  • Song, Hyo-Jung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.219-231
    • /
    • 2005
  • Many applications in cluster computing require QoS (Quality of Service) services. Since performance predictability is essential to provide QoS service, underlying systems must provide predictable performance guarantees. One way to ensure such guarantees from network subsystems is to generate global schedules from applications'network requests and to execute the local portion of the schedules at each network interface. To ensure accurate execution of the schedules, it is essential that a global time base must be maintained by local clocks at each network interface. The task of providing a single time base is called a synchronization problem and this paper addresses the problem for system area networks. To solve the synchronization problem, FM-QoS (1) proposed a simple synchronization mechanism called FBS(Feedback-Based Synchronization) which uses built-in How control signals. This paper extends the basic notion of FM-QoS to a theoretical framework and generalizes it: 1) to identify a set of built-in network flow control signals for synchrony and to formalize it as a synchronizing schedule, and 2) to analyze the synchronization precision of FBS in terms of flow control parameters. Based on generalization, two application classes are studied for a single switch network and a multiple switch network. For each class, a synchroniring schedule is proposed and its bounded skew is analyzed. Unlike FM-QoS, the synchronizing schedule is proven to minimize the bounded skew value for a single switch network. To understand the analysis results in practical networks, skew values are obtained with flow control parameters of Myrinet-1280/SAN. We observed that the maximum bounded skew of FBS is 9.2 Usec or less over all our experiments. Based on this result, we came to a conclusion that FBS was a feasible synchronization mechanism in system area networks.

Characterization of fracture network with geometrical properties

  • 지성훈;박영진;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.106-109
    • /
    • 2002
  • In order to delineate the flow system of fractured hard rock aquifer, numerical experiments are conducted and the results are analyzed with Mote Carlo simulation. The results show that the percolation threshold and the effective conductivity of a fracture network can be estimated with power law exponent (a) and fracture intensity. But the dependability of the estimated value relies on the percolation threshold, the system scale, and the characterization level.

  • PDF

Designing Flexible Packets for Multi-Satellite Data Transmission in a Physical Network Separation Environment

  • Baek, Hyun Chul;Lee, Sang Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.26-35
    • /
    • 2020
  • The national satellite operation network, which supports multiple satellites, was designated as a Critical Information Infrastructure (CII) in 2017. The network was designed independently from the control network and the information network to enhance physical security. Planning is underway to establish a bidirectional data interface between networks. The data transmission system allows data flow only to the physical layer and the data link layer; hence, only one file can be transferred at any one time. This means that when large amounts of data are being transmitted, no other data can be sent simultaneously in urgent situations. Thus, this paper discusses the design of flexible packets for the transmission of data between networks in an environment where physical security has been enhanced through network separation and based on this, presents a method for transmitting data effectively.