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Abstract Many applications in cluster computing require QoS(Quality of Service) services. Since
performance predictability is essential to provide QoS service, underlying systems must provide
predictable performance guarantees. One way to ensure such guarantees from network subsystems is
to generate global schedules from applications’ network requests and to execute the local portion of
the schedules at each network interface. To ensure accurate execution of the schedules, it is essential
that a global time base must be maintained by local clocks at each network interface. The task of
providing a single time base is called a synchronization problem and this paper addresses the problem
for system area networks.

To solve the synchronization problem, FM-QoS[1] proposed a simple synchronization mechanism
called FBS(Feedback-Based Synchronization) which uses built-in flow control signals. This paper
extends the basic notion of FM-QoS to a theoretical framework and generalizes it: 1) to identify a set
of built-in network flow control signals for synchrony and to formalize it as a synchronizing schedule,
and 2) to analyze the synchronization precision of FBS in terms of flow control parameters. Based on
generalization, two application classes are studied for a single switch network and a multiple switch
network. For each class, a synchronizing schedule is proposed and its bounded skew is analyzed.
Unlike FM-QoS, the synchronizing schedule is proven to minimize the bounded skew value for a
single switch network.

To understand the analysis results in practical networks, skew values are obtained with flow
control parameters of Myrinet-1280/SAN[2]. We observed that the maximum bounded skew of FBS
is 9.2 usec or less over all our experiments. Based on this result, we came to a conclusion that FBS
was a feasible synchronization mechanism in system area networks.

Key words ' synchronization, link level flow control, system area networks, cluster computing
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computing an attractive way to achieve high-
performance[3]. To provide supercomputer—class per-
formance, the components are linked with powerful
communication subsystems like Myricom Myrinet(2]
and Tandem ServerNet[4].

increase in the performance of the communication

However, the simple

subsystems does not satisfy many cluster appli-
cations which require quality of service guarantees
such as reliability, performance predictability and
availability[5]. This paper focuses on performance
predictability since it is essential to applications
that require guaranteed service[5].

Performance predictability in networks is achieved
through careful management of network resources.
Existing resource management strategies can be
classified into three categories: virtual circuits[6],
physical circuits[4)(e.g., in Tandem ServerNet) and
software-based global scheduling[l] (e.g.,
QoS in Myrinet). The basic idea of the virtual
circuit approach is to virtualize every end-to-end
communication stream and to manage network
resources at the granularity of such streams. The
fine granularity of this approach enables highly
flexible synchronization schemes, serving a wide
variety of application classes[4]l. However, the
management cost of virtual circuits makes its
usability questionable in a large-scale system.

The physical circuit approach applied in Tandem
ServerNet manages network resources at the
granularity of physical link of a switch. This
approach allocates different amount of output link
bandwidth to each input link. The coarser gra-
nularity of management reduces implementation
complexity, but it fails to control the resource
coupling among end-to-end streams that are
multiplexed over a single physical link, thereby
limiting the deliverable network = performance
guarantees.

While the above two approaches augment switch
(or router) hardware with a resource management
mechanism, the software-based global scheduling
approach uses unmodified network hardware with
global scheduler softwaie which reserves a set of
time slots for each end-to-end communication
stream at connection setup. The advantage of this

approach is that it does not require any change in

in FM-

Alz=El 2 olg A 2 A A 5 Z(A066)

switch hardware. This approach, however, poses
two challenges: the first is building the global
scheduler and the second is enforcing the schedules
it generates. While the global scheduler can easily
be built on the basis of existing reservation
protocols[5], the enforcement mechanism remains a
significant challenge. The difficulty with an enfor-
cement mechanism is due to potential asynchrony
between the local clocks of the network interfaces.
In this scenario, even correct schedules may fail to
deliver predictable performance due to unexpected
resource conflicts between communication streams.
In this paper we address the problem of main-
taining a global time base among multiple network
interfaces.

Depending on the level at which synchronization
synchronization can be
While
exchanging clock tick information at a software

activity is performed,

hardware-based[7] or software-based[8].
level may incur large synchronization inaccuracies
with software overhead, providing a single time
base at the hardware level may be too costly. In
order to avoid the disadvantages of both methods,
feedback-based synchronization(FBS) in FM-QoS[1]
was designed at the firmware level, which does not
require a change in network interface hardware.
Consider two network interfaces: one with a fast
clock called NICf and the other with a slow clock
called NICs. The basic idea of FBS is to force a
packet from NICf to be blocked by another packet
from NICs for a necessary amount of time, and to
make the firmware of NICf detect the blockage via
network flow control feedback. The firmware of
NICf then pauses the local clock while its packet is
blocked, and resumes the clock when the packet
restarts. As a result, the fast local clock of NICf is
synchronized with the slow clock of NICs by the
interaction of the two packets. The goal of FBS is
to force all the clocks in the system to slow to
progress at the same rate as the slowest one.

The key challenge of FBS is to define the proper
interaction among packets to ensure synchrony.
The interaction can be expressed as a schedule to
specify when and to whom each network interface
sends a packet. FM-QoS calls the schedule a
synchronizing schedule and exemplifies it for a
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single switch network. To provide a general FBS
framework, this paper identifies requirements of
synchronizing schedules for arbitrary network topo-
logies. This paper also derives a synchronization
skew model in terms of flow control parameters,
such aslrouting delay and buffer length.

Based on the synchronizing schedule and the
synchronization skew model, two network classes
are examined a single switch network and a
multiple switch network. For each class, a synch-
ronizing schedule is proposed and its bounded skew
is analyzed. With the practical values for flow
control parameters of Myrinet[2], we observe the
bounded skew is less than 9223 ugsec for all
experiments.

The rest of the paper is organized as follows:
Section 2 describes the network model. Section 3
addresses the definition and requirements of the
Section 4 presents the

synchronizing schedule.

synchronization skew model. In the context of
Myrinet networks, Section 5 characterizes synchro-
nization skew and overhead of FBS. Section 6
compares our work with others, and Section 7

summarizes this paper.

2. Background : Network Model

In this section, we describe wormhole networks
as the assumed network model throughout the
paper, because they are popular for system area
networks due to their simplicity and cost-
effectiveness[3,9].

2.1 Network Operation

A network is a set of network elements, each of
which is either a network interface or a router[2].
Each network element is connected by a link, and
has a small slack buffer associated with each input
link. A network interface injects/consumes a packet
to/from a network, and injected packets are
transferred through routers. When a router receives
the header of a packet, it assigns an available
output link to the header. The packet is then
transmitted through the established link in units of
flits which are the smallest sizé of information in
wormhole networks. If an output link is already in
use by another packet, the whole packet stops

along the partially established path. When the

output link is released, the packet resumes
transmission.

During blockage and resumption, link-level flow
controls regulate data flow at upstream routers to
prevent buffer overflow and underflow. The link-
level flow control scheme, called stop and go flow
control[2], operates based on the occupancy of each
slack buffer, using STOP and GO flits: assuming
the size of slack buffer is bl, 1) the STOP flit is
sent to a sender element when the receiver buffer
occupancy increases to ks(called the high water—
mark) to inhibit the sender from sending flits, and
2) the GO flit is sent to the sender when the
occupancy drops to kg(called the low watermark)
to allow the sender to resume sending (bl=ks=>kg
=0). The parameters ks and kg are chosen so that
the delays to propagate the STOP/GO flits do not
cause overflow or underflow. Assuming the sender
keeps sending flits at the maximum rate, bl-ks
data flits are in transit over a link while the STOP
flit is being transferred. Similarly, kg is the maxi-
mum number of flits that the receiver consumes
after it issues the GO flit and before the resultant
data flits arrive at the receiver. In stop and go
flow control, when a packet header is blocked, the
STOP flit is propagated up to the source network
interface?, keeping the source network interface
from injecting remaining flits of the packet. After
the network link is unblocked, the GO flit is
propagated to the source network interface in the
same manner, allowing it to resume injecting the
packet.

2.2 Detailed Network Operation

This subsection explains the operation of a
network element in detail. A network interface has
a local clock, and its basic unit is a time slot.
Network interfaces inject packets at scheduled time
slots initiated by a header flit and terminated by a
tail flit. The period over which network interfaces
is called a character period, cp.
defined as cp

inject a flit
Therefore, time slot length is
multiplied by the number of flits per packet.

A router logically consists of three functional

1) This paper assumes that the packet length is long enough such
that intermediate buffers along the path cannot accommodate a
whole packet.
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units. These units are a flow controller, a router

arbiter and a crossbar(10]: a flow controller
performs the stop and go flow control, a router
arbiter assigns an available output link for an
incoming header, and a crossbar transfers a flit
through the assigned path. Because the router
arbiter operates only for a header not for data flits,
the times for header and data flits to traverse a
router are different. Each of them is modeled as
rd(routing delay) and sd(switching delay), respec-
tively. Besides payload flits like a header and data
flits, control flits such as STOP/GO f{lit block/issue
operations at the previous network element after a
certain delay. The delay is modeled by 1d + 2 * fc,
where 1d (link delay) is the propagation delay of a
single flit over a physical link, and fc(flow
controller delay) is the delay for a flow controller
to process the control flit. Note that the STOP/GO
flits are processed by both flow controllers at a

sender and a receiver side.

3. Feedback-based Synchronization

This section describes the basic concept of
feedback-based synchronization(FBS) proposed in
FM-QoS[1),and then generalizes it by introducing
the notion of a synchronizing schedule. First, the
requirements of synchronizing schedules are identi-
fied, and then two synchronizing schedules are

proposed for two specific networks satisfying the

requirements.
3.1 Basic Concept of Feedback-based Synchro-

nization
Suppose there are two network interfaces

NICs(with a slow clock) and NICf (with a fast
clock) and when the local clock of NICf turns into
time slot 2, NICs is still at time slot 1 as shown in
Figure 1. Synchrony between NICf and NICs can
be achieved by stalling the progression of time slot
2 of NICf until NICs is also ready to advance to
time slot 2. Consider a packet A sent from NICs at
time slot 1 and a packet B sent from NICf at time
slot 2. Assume the two packets are destined to the
same destination network interface NICd and link L
is an input link of NICd. If the skew of the two
clocks is not more than one time slot long and

hence packet A acquires link L earlier, then packet

B should be blocked until packet A releases link L
at the end of time slot 1. Blocking of packet B
stalls NICf from injecting remaining flits of packet
B, prolonging the corresponding time slot. As a
result, NICf ‘s clock is synchronized with NICs ‘s
clock. This synchronization is made possible by
stop and go flow control where the STOP and GO
flit are propagated from NICd to NICf to stop and
resume packet B, respectively.

The goal of FBS is to slow down all the net-
work interfaces to the slowest one using the above
technique. A communication pattern(a series of
packets) which has this effect is called synchro-
nizing schedule. A synchronizing schedule specifies
when and to whom each network interface sends a
packet. The interaction of these packets should stall
all interfaces local clocks to match the slowest
interface’s clock. In the example of Figure 1, the
synchrqnizing schedule is that NICs injects a
packet to NICd at time slot 1 and NICf injects
another packet to NICd at time slot 2.

Time Slotl Time Slot2 Time Stot3
Slow NICs SNDINIC) |
Time Slotl Time Slot2 Time Slot3
Fast NICf SND(NICd)

Stalled
TFigure 1 An example where fast NICf is slowed
down to slow NICs

3.2 Synchronizing Schedule of Feedback-based
Synchronization

In order for a synchronizing schedule to achieve
a synchrony, the schedule should make a packet
from every fast network interface be blocked by
another one from the slowest network interface. We
call this the dependency requirement. Besides the
dependency requirement, the synchronizing schedule
should not allow multiple network interfaces to
access the same link at the same time slot.
Otherwise, some of the multiple interfaces would be
stalled even if they have the same time base. We
term this property the conflict—free requirement. To
describe the two requirements clearly, following

notation is adopted.
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U : a set of network interfaces,

«M : a set of messages,

s, f, d, Kj
interfaces in U,

(for some integer j) : some network

* ts : some time slot,

s = d : a message which is injected by NICs and
destined to NICd at time slot ts, )

v s —» M (NICs directly precedes NICf with respect to
M) :
s = &'f holds if M contains s =d and f = ad.
TIME(s—¢Y) is defined by ts and — 4" is called a
direct precedence relation. If obvious, M is omitted.

« 5 — Mf (NICs indirectly precedes NICf with respect to
M) :
s — Mf holds if M contains s — k1, k1 — &k2, ., ki
— M such that TIME(s — k1) < TIME(kt — 4*k2)<
. <TIME(ki = &). —» M is called an indirect prece-
dence relation and M is omitted if obvious.

+ s = Mf (NICs precedes NICf with respect to M) :
s—Mf holds if s—d'f or s— M. —Mis called a
precedence relation and M is omitted if obvious.

Consider NICs (with a slow clock) and NICf
(with a fast clock) in U. The s— 4f implies that
NICf is slowed down to NICs
interaction of two packets injected from NICs and

by a direct

NICf, as in the example of Figure 1. Meanwhile,
the s — if corresponds to the case where there are
other network interfaces NICkl1, NICk2.., NICki in
U, and NICkl is directly slowed down by NICs,
then NICkj is slowed down by NICk(j-1), sub-
sequently(2<=j<=1), and finally NICf is slowed
down by NICki. In either case, NICf is synch-
ronized to NICs and it is represented as s—f.
With the above notation, a synchronizing schedule
is defined as a set of messages, M, which satisfies
both the dependency requirement and conflict-free
requirement.

Requirement 1 : Dependency requirement

A set of messages M sat{'sfies the dependency
requirement if V' s, f{=s) € U, s — Yf where U
is a set of all network interfaces in a network.

Because any network interface can be the
slowest one at any given time, a synchronizing
schedule should make any network interface pre—
cede all others.

Requirement 2 : Conflict-free requirement

A set of messages M satisfies the conflict-free
requirement if for any two messages of sl =dl
and s2(=sl) = d2 in M, a path from NICsl to
NICdl and a path from NICsZ2 to NICdA?2 do not
overlap.

The identification of requirements of a synch-
ronizing schedule allows to find a synchronizing
schedule in any network topology. Section 3.3 and
Section 3.4 propose a synchronizing schedule for
single switch networks and multiple switch net—
works, respectively.

3.3 Synchronizing Schedule for a Single Switch

Network

This section first defines a building block com-
munication pattern(BBP). Using BBP, a simple syn-
chronizing schedule(SSS) is defined for a single
switch network and a proof that SSS satisfies the
two requirements is given. Finally, SSS is illus-
trated with an example.

When all elements in U are uniquely identified in
some way and the {" element is represented by
idxu(i) (0 <i<|Ul), a BBP is defined by Definition
1 for some time slot ts. In this case, BBP is
denoted by BBP(U, ts), and it is said to be applied
to U at time slot ts.

Definition 1 BBP(U,ts)

BBP(Uts) = { s 2 d | s= idxu(i), d= idxy ((
i+ t(1+t)/2) mod |UI), V O<it=<1|Ul-1}

When BBP is applied to U at time slot ts, and U
is a set of all network interfaces in a single switch
network, BBP
schedule(SSS) and is denoted by SSS(U,ts).

Theorem 1. The SSS(U,ts) satisfies the conflict-
free requirement and the dependency requirement.

is called a simple synchronizing

Due to the space limit, we omit the proof here.
See Appendix A.l for the proof. O

Lemma 1. The BBP(U,ts) makes any two net-
work interfaces in U directly precede each other,
ie, V sfi=s) € U, s — 4227V ¢

Due to the space limit, we omit the proof here.
See Appendix A.2 for the proof. O

Example 1. SSS ({NICO, NICI, NIC2, NIC3,
NIC4, NIC5, NIC6, NIC7}, 0)

When U={NIC0, NIC1, NIC2, NIC3, NIC4, NIC5,
NIC6, NIC7} is the set of all network interfaces
connected through a single switch and idxy () =
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NICi (0 <i<7), Table 1 lists every messages of
SSS(U,0)
injected. For any network interface, e.g., NIC7, it is

by time slots when messages are
obvious that the following relations hold : NIC7 — 4
NIC6, NIC7—g4 NIC5 NIC7—4 NIC4, NIC7 —g4
NIC3, NIC7—g4 NIC2, NIC7—g4 NICl, NIC7 —y4
NICO (refer to entries in boldface in the table).
Since this is true for all interfaces in U, it follows
that SSS fulfills the dependency requirement. SSS
also satisfies the conflict-free requirement because
each network interface injects a packet to a dif-
ferent destination at any given time slot, and
packets in a single crossbar switch network des-
tined for different destinations always use disjoint
paths. O

3.4 Synchronizing Schedule for a Multiple Switch

Network

Since any network topology can be converted
into a spanning tree[1l1], we chose a tree as the
base network topology in a multiple switch FBS
framework. When network interfaces and switches
are represented as leaves and nonterminal nodes in
a tree, respectively, SSS does not satisfy the conflict-

free requirement. For example, when schedule in
Table 1 is executed in the tree network depicted in
Figure 2, packets from NICO and NIC1 are destined
to NIC4 and NIC5, respectively, at time slot 7,
which results in a link conflict.

To avoid link conflicts, a hierarchical synch-
ronizing schedule(HSS) is designed which employs
a BBP in a hierarchical fashion. HSS achieves
synchrony using two separate phases: 1) a clock
gather phase in which only few selected network
interfaces are synchronized to the slowest one, and
2) a clock distribute phase in which the selected
network interfaces synchronized in the previous
phase distribute their synchronized time base to all
others. Assuming NIC7 is the slowest network
interface in the tree of Figure 2, Example 2
describes how HSS propagates the slowest time
base of NIC7 to all others, assuming that HSS
starts at time slot 0. Table 2 lists every messages
in HSS shown in Example 2, by time slots when

they are generated.

Example 2. HSS for a tree in Figure 2
» Clock gather phase:

Table 1 Messages in SSS({NIC0, NIC1, NIC2, NIC3, NIC4, NIC5, NIC6, NIC7}, 0)

time slot

0 0=,0 1=o91 2=,92 3= 3 4=44 5=05 6 =06 7T=07
1 0=:1 1=, 2 2=,3 3=14 4=,5 5=16 6=:7 7=10
2 0=:3 1 =24 2=35 326 4=,7 5=:20 6 =31 7=22
3 0=36 1=37 2=30 =31 4=32 5=33 6 =34 7=35
4 0=>42 1=43 2=44 345 4=46 5=,47 6=>,40 7=41
5 0=57 1=50 2=51 3>s52 4=53 5=54 6 =55 7=56
6 0=465 1=566 2=67 3=60 4 =41 5=42 6 =43 T=64d
7 0=4.4 1=+75 2=16 3=>.7 4=70 5=71 6 =72 7=73

Level 3

Level 2

Level 1

Level 0

_; Level-2-subtree

D Level-3-subtree

*Figure 2 A tree with 4 levels



A 2] oojg o] M EGA Y 5713} 7Y 225

Table 2 Messages in HSS in Example 2

time slot

0 0=00 1=41 2=>92 =03 4=04 5=¢5 6=96 T=47
1 0=.:1 1=,0 2=:3 3=12 4=15 5=.4 6=.17 7.6
2 0=20 2=,2 4,4 6 =26

3 0=52 2=30 4=;6 634

4 0=40 4=44

5 0=514 4=50

6 0=40 2=42 4=4¢5 6 =466

7 0=72 2570 4=.6 6=14

8 0=30 1=351 2=g2 3=33 4=34 5=3sb 6 =136 7=317
9 0=91 1=490 2=93 3= 2 4=45 5=494 6 =47 7=496

~ 1% step : define a level-1-subtree as a subtree
with a root at level 1 where level 0 is the
bottommost level. At time slot 0 and 1, four
BBPs are concurrently applied to the leaves of
each level-1-subtree. (NICO and NIC1l, NIC2
and NIC3, NIC4 and NIC5, and NIC6 and
NIC7). By Lemma 1, two network interfaces to
which BBP is applied directly precede each
other. The BBP applied to NIC6 and NIC7
induces NIC7 — 4 NIC6.

2" step: define a level-2-subtree as a subtree

with a root at level 2. When a level-2-subtree
contains two level-1-subtrees as in Figure 2,
leaders of the level-2-subtree are defined as
the network interfaces with the smallest index
in each level-1-subtree. Two BBPs are applied
to the leaders of each level-2-subtree at time
slot 2: one to NICO and NICZ and the other to
NIC4 and NIC6. From the BBP applied to NIC4
and NIC6, NIC6 — 4 NIC4 is achieved.
39 step: define a level-3-subtree and its lea-
ders similarly. At time slot 4 and 5, a BBP is
leaders NICO and NIC4, and
therefore, NIC4—4 NICO. It subsequently
induces NIC_7—; NIC_0 along with NIC7— 4
NIC6 (from the 1% step) and NIC_6—4 NIC_4
(from the 2™ step).
By the clock gather phase which occurs from
time slot 0 to time slot 5 NICO and NIC4 are
synchronized to NIC7. In the clock distribute phase

applied to

to occur from time slot 6, all others are indirectly
synchronized to NIC7 via NICO and NICA4.
» Clock distribute phase
«1" step : at time slot 6 and 7, two BBPs are
applied to NICO and NIC2, and to NIC4 an

NIC6 in the same manner at the 2™ step in the
clock gather phase. Therefore, NICO — ¢ NICZ.

. ond step : at time slot 8 and 9, four SSSs are
applied to NICO and NICI, to NIC2 and NIC3,
NIC4 and NIC5 and to NIC6 and NIC7
Therefore, NICO— 4 NIC1, NIC2—4 NIC3, and
NIC4 >4 NIC5. As a result, NIC7 precedes all
other network interfaces either directly or
indirectly. (]

HSS consists of two groups of BBPs : one set

performed during the clock gather phase and the

other set during the clock distribute phase. Both
phases consist of multiple steps, (refer to Uisism-1

GATHER(T, U, ts) and Uisism2 DISTRIBUTE (T,

U, ts)

multiple

in Definition 2). Each step consists of
BBPs
applied to a disjoint subtree. BBP makes selected

each of which 1is concurrently
leaves of a disjoint subtree directly precede each
other. To prevent BBP from causing link conflicts,
the size of the set of selected network interfaces is
limited. Denoting the set of selected interfaces in a
disjoint subtree rooted at node r as Leaders:, this
requirement is expressed as |Leaders| < i, where i
is defined as the number of children of node r. For
that purpose, only one network interface is selected
from each subtree of node r, e.g., the one with the
smallest index.

In order to find the slowest time base and
distribute it throughout a network, the clock gather
phase and clock distribute phase progress in the
opposite directions. To avoid packet conflicts bet-
ween multiple BBPs at different steps or phases,
HSS serializes each step and phase without over-
lapping in time. For the serialization, BBPs at the
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next step start after the longest time to execute
BBP elapseé (refer to Glts,i) and D(tsi) in
Definition 2). The clock distribute phase serializes
steps in a similar fashion.

Supposing a spanning tree T with m levels is
found for some network topology with a set of
network interfaces U, when HSS synchronizes U
from time slot ts, it is represented by HSS(T, U,
ts) . Assuming each node n; of T is indexed from
0 to ITI-1, let smallest{N) be the node with the
smallest index in N where N is some set of nodes.
Defining level(j) to be the set of all nodes at level
j (0 <j<m-1), and subtree(r) to a subtree whose
root is a child node of r , HSS(T,Uts) .is defined
as in Definition 2. :

Definition 2 HSS(T,U,ts)

HSS(T,Uts) = Uisism1 GATHER; (T, U, ts) U
<ism-2 DISTRIBUTE; (T, U, ts)

where

GATHER; (T, U, ts) = Urckvan BBP(Leaders:,

Gfts, 1)) where

Leaders; = { smallest(subtree(r) NU), V subtree(r) } ,

Gltsi) = [ ts if i=1
{ Glts,i-1) + MAXqekvadn |Leadersq,
otherwise
DISTRIBUTE(T,Ujts) = Urewva® BBP(Leaders:,
D(ts, i)) where

D(ts, i) = [ Gfts, m-1) + Leadersroo,
l D(tS, i+1) + MAXquevel(i+1) |Leadersq|,
otherwise.

if i=m-2,

Theorem 2. HSS satisfies the
requirement and the conflict-free requirement.

dependency

Due to the space limit, we omit the proof here.
See Appendix A.3 for the proof. O

Section 3 defined a synchronizing schedule of
SSS and HSS. Both make the slowest network
interface either directly(SSS) or indirectly(HSS)
precede all others.

4. Analysis of Synchronization Skew of FBS

This section examines the synchronization pre-
cision of FBS. In Section 4.1, the skew of the —qg
relation is analyzed. Based on that analysis, skews
of —; and synchronizing schedules are drawn. In
Section 4.2 and Section 4.3, the skew model is
applied to SSS and HSS. Given the upper bound of

the clock skew, the interval with which FBS needs
to repeat is examined in Section 4.4 to maintain a
desired synchronization precision.

4.1 Synchronization Skew of FBS

Consider s—4f as depicted in Figure 1 where
packet B is blocked by packet A at input link L of
NICd. Here synchrony is achieved in three steps: 1)
after receiving the STOP flit, NICf stalls injecting
remaining flits of packet B; 2) after NICs finishes
time slot 1, link L is released; and 3) after link L
is released, NICf resumes to inject the remaining
flits. Each step incurs a timing gap which might
prevent perfect synchrony: 1) GAP: occurring after
NICf starts time slot 2 but before it receives a
STOP flit, 2) GAP; occurring after NICs injects a
tail flit of packet A but before link L is freed, and
3) GAP3 occurring after link L is available but
before NICf receives a GO flit. The three timing
gaps are calculated by Equations (1)-(3).

With stop and go flow control, NICf receives a
STOP flit after all buffers along the path are filled.
According to the model in Section 2.2, each buffer
generates a STOP flit when its occupancy reaches
ks. Then, the buffer at upstream nodes receives the
STOP flit after it sends out bl flits. Therefore,
NICf receives the STOP flit after it injects bl * p2
flits into the network where p2 is the number of
intermediate routers between NICf and NICd. From
these observations, GAP: is calculated as follows:

GAP; = bl * p2 * cp. (D

GAP: corresponds to the time required for the
tail flit of packet A to traverse intermediate routers
and links from NICs to link L. When the tail flit
enters a buffer associated with an intermediate link,
the number of flits ahead in the buffer is between
0 and (ks-2). This
assumed to be long enough. Hence, the tail flit is

is because the packet is

paused at the source when its corresponding header
is blocked, and it is not routed through buffers
whose occupancy is ks or more. The time for the
tail flit to traverse a router is the sum of the
waiting time to reach a head of a buffer and the
switching delay for the tail flit. If pl is the number
of intermediate routers between NICs and NICd,
GAP; is !

pl * (Id + sd) < GAP; < pl * (Id + sd * (ks-1)). (2)
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While blocked, the header of packet B is waiting
at the router immediately preceding NICd, called
router r,. GAP3 corresponds to the time for packet
B to set up a new path at router r, ,and for the
resulting GO flit to be propagated to NICf To
shrink the buffer occupancy to kg, router rp takes
rd+(bl-kg-1)*sd, while each (p2-1) intermediate
router takes (bi-kg) *sd. After each buffer shrinks,
the GO flit propagates to the previous network
element which takes (Id +2*fc). From these, GAP3
is given as :

GAP3 = rd + (bl-kg-1) * sd + (p2-1) * (bl-kg)

xsd + p2* (1d+2+fc) (3)
= rd + (p2 * (bl-kg)-1) *sd +p2 * (1d + 2 * fc).

Since GAP: and GAP:; slow NICf down and
GAP: makes NICf faster, NICs and NICf have a
synchronization skew of GAP:; + GAP; - GAP; at
the point when NICs and NICf complete time slot
2(refer to Figure 3). This is called skew of s—df
and denoted by skew (s—4f) with the following
definition:

skew (s—df) = | GAP2+ GAP; ~ GAP; |.  (4)

From the boundary values of GAP;, GAP: and

GAP; in Equation(1)-(3),
skew (s— 4f) is given as follows :
skew (s —df) < MAX (IGAPmin(pL,p2)l, |GAPmax(pl,p2)]),
where .
[ GAPmin(pl,p2) = rd+sd*{pl+p2«(bl-kg)-1}+1d* (pl+p2)
+2fc*p2-bl*p2+cp, 5)
| GAPmax(p1,p2) = rd+sd*{pl*(ks-1)+p2*(bl-kg)-1}
+1d*(p1+p2)+2*fc*p2-bl*p2*cp.

For an indirect precedence relation of s—f, the

the bounded value of

skew is the sum of skews of each —4 relation
which constitutes s — if as follows :

skew (s—if) = skew (s—dkl) + Zisjsi1 skew(kj

TIME(s—¢k1) < TIME(k1—4k2)<,...,<TIME (ki—df).
When FBS synchronizes a network with a syn-
chronizing schedule of S#, the skew of the schedule
S* is defined by the maximum skew of any
precedence relation from S*.
skew(S*) = MAX vs-""t (skew (s—f)). N
4.2 Skew of SSS
Since s—a>f holds for all sf€ U, skew(SSS) is
bounded by Equation (5) with pl=p2=1. That is,
skew(SSS) € MAX(|GAPmin(1,1)[,|GAPmax(1,1)1)
(8)
= MAX (| rd+sd* (bl-kg)+2=*1d+2%*fc -
bl*cpl, | rd+sdx (kstbl-kg-2)+2*1d+
2% fc-blxcp | ).
We call the value in Equation (8) the bounded
skew(SSS)
minimum bounded skew.

and argue that SSS achieves the

Theorem 3. For any synchronizing schedule S$*
which is applied in a single switch network, the
bounded skew(S#) is not less than the bounded
skew(SSS).

Due to the space limit, we omit the proof here.
See Appendix A4 for the complete proof. O

4.3 Skew of HSS

Consider a direct precedence relation induced at
the i"

denoted as sg— ¢

step of the clock gather phase(1<i<m-1),
BBP(Leaders g, Glts,i)) f, for sg fp €
Leadersr; and node ng at level i . Then, sz —>4
BBP(Leaders ra. GUsi) ¢ o hounded by Equation (5)
with 1 < pl, p2 < 2i-1, because any two network
interfaces in Leadersy are separated by a maximum
of 21 hops and a minimum of 2 hops. Since the
proportional constant of p2 in Equation (5) can be
either positive or negative depending on network
flow control parameter values, the minimum value

—4 k(j+1)) + skew(ki~>4 ), (6) of GAPmin(pl, p2) is MIN( GAPmin(1, 1), GAPmn(1,
if there exist s—dkl, kl—d¢k?2, ..., ki—sf where 2i-1)). Similarly, the maximum value of GAPmax
Time Slotl Time Slot2 Time Slot3
Slow NICs |
Ideal NICf l I
ew (s—4f)

Practical NICf [

Figure 3 skew (s — df).
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(pl,p2) is MAX(GAPmax(2i-1, 1), GAPmax(2i-1, 2i-1)).
Therefore, the following inequality holds :
skew(sg — BBP(Leaders g, Gtsi)) f,) < ©)
MAX(IMIN(GAPmin(1,1), GAPmin(1, 2i-1)), IMAX
(GAPmax(2i-1,1), GAPmax(2i-1, 2i-1) ).
Also consider a direct precedence relation induced
at the i® step of the clock distribute phase denoted

BBP(Leaders rd, D(tsi) £, for sa f4
i

as S4 —>d € Leadersm

and node nw at level i (1 <i<m-2). Then, skew(sq
dBBP(Leaders rd, Dflts,i) fd)

—

is bounded by the same
value in Equation (9)

Since s— "%t incurs at most (m-1) — 4 relations
from BBP(Leadersy, G(ts,i)) and m-2 — 4 relations
from BBP(Leaders:, D(tsi)) for node ny at level i
(1<i<m-1) and node ng at level I'(1 <i' <
m-2), skew(HSS) is bounded by

skew(HSS) <

MAX(IMIN(GAPmin(1,1), GAPmin(1, 2(m-1)-1)I,

IMAX(GAPmax(2(m-1)-1,1), GAPmax(2(m-1)-1,

2(m-1)-1)| ) (10)

+23 1 <i<m-2 MAX (IMIN(GAPrmin (1,1), GAPmin(1, 2i-1),

IMAX(GAPmax(2i-1,1), GAPmax(2i-1, 2i-1))I)

where m is the number of levels in the tree. We
call the value in Equation (10) the bounded skew
(HSS), and it grows as the depth of the tree in-
With
minimize the depth of a used spanning tree.

4.4 Synchronization Interval

FBS requires a clock skew to be less than one

creases. that reason, it is preferred to

time slot length at the point of synchronization.
Otherwise, in the example of Figure 1, fast NICf
would hold the link L earlier than slow NICs and
synchrony would not be achieved. For that purpose,
the skew of any network interface is always to be
kept below the (1/2) * time slot length. Due to
clock drift, t time slots accumulate the skew of (t
* time slot length * drift rate). To ensure the
accumulated skew plus synchronization skew
remains below (1/2) * time slot length, FBS should
be executed periodically. We call this period the
synchronization interval, si. With a given syn-
chronizing schedule of S*, si is calculated in units
of time slots as follows:

si = | ( (1/2) - skew(S#) / time slot length) / drift

rate | . (11)

where time slot length is determined by the cp *

(the number of flits in a. packet) as defined in
Section 2.1. The periodic execution of a synch-
ronizing schedule consumes time slots which would
otherwise be used for application communication
streams. Given a synchronizing schedule of S*, the
time overhead is given by Equation (12). For a
fixed clock drift rate and time slot length, the time
overhead will increase as either skew(S*) or the
number of time slots to execute S* gets larger.

time overhead =

(the number of time slots to execute S*) / si =

drift rate *(the number of time slots to execute

S#*) / ( (1/2)- (skew(S#)) /time slot length).

(12)

5. Numerical Results of Synchronization Skew

5.1 Results of SSS

This subsection presents results of SSS in a
single switch network. Unless otherwise noted, all
results are measured with packet length of 2K
bytes where the flit size is one byte[3] and with
default parameters used in Myrinet-1280/SANI[2]
(Jd=17ns, cp =6.25ns, sd =2.0ns, rd =100ns, fc
=3.26ns, bl =64Bytes, ks =53Bytes and kg=17Bytes).
With the default parameters, the bounded synch-
ronization skew is 237 nsec. Table 3 presents
synchronization interval and time overhead varying
the clock drift rates from 100ppm to 500ppm. Since
the number of time slots to execute SSS is same
as the switch size, time overhead grows linearly
with the size of the switch.

Because FBS

using the flow control signals, we examine the

synchronizes network interfaces
effect of rd, cp and bl on synchronization per—

formance. The following experiments show the

Table 3 Analysis results with packet length=2K
Bytes and the default parameters in [2]

Synchronizing Time overhead (%)
Drift Rate interval 4-port | 8-port | 16-port
(in time slots) | gwitch | switch | -switch
100ppm 4810 0.08 0.17 0.33
200ppm 2405 0.17 0.33 0.67
300ppm 1603 0.25 05 1.0
400ppm 1202 0.33 0.67 1.33
500ppm 962 0.42 0.83 1.66
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synchronization performance while independently

varying each flow control parameter. Figure 4
shows the behavior of bounded synchronization
skew as rd increases from 50 nsec to 140 nsec.
Interestingly, increasing rd from 50 nsec to 140
nsec reduces the synchronization skew from 298
nsec to 197 nsec. This is due to the characteristics
of the default flow control parameters GAPrin
(p1,p2) and GAPmax(pl,p2) in Equation (5) have
negative values as the result of the large value of
bl * cp. A larger value of rd offsets the negative
value to some extent, resulting in smaller synch-

ronization skews.

(in nsec)
ggR3888

Synchronization skew

50 80 110 140
Routing delay (in nsec)

Figure 4 Synchronizing skew with various routing
delay (rd) from 50nsec to 140nsec

The left one of Figure 5 illustrates the bounded
synchronization skews as cp is decreased from 12.5
nsec to 3.13 nsec. As described in Section 2, cp is
the amount of time required to inject a flit into the
network. The link bandwidth and the value of cp
vary inversely ; cp values of 12.5 nsec, 6.25 nsec,
417 nsec and 3.13 nsec correspond to the link
bandwidths of 0.64Gbps, 1.28Gbps, 1.92Gbps and
2.56Gbps, respectively. Because the term of bl * cp
dominates the synchronization skew, smaller values
of ¢p (i.e., higher link bandwidth) results in smaller
synchronization skews. This behavior implies that
FBS is scalable in terms of the link bandwidth,
since the synchronization precision of FBS
improves with faster networks.Increasing the buffer
length from 64 Bytes to 256 Bytes, the right one of
Figure 5 illustrates that bounded synchronization
skews grow from 237 nsec to 1.05 micro sec. The
increase can be attributed to a deep buffer which
prohibits flow control signals from propagating

promptly, thereby limiting the synchronization

precision.
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64 128 192 256
Buffer size (in Bytes)
Figure 5 Synchronizing skew with varying link
bandwidths from 0.64Gbps to 2.56Gbps,
and buffer size from 64Bytes to 256Bytes.

From all the experiments performed with SSS,
we observe that the FBS provides synchronization
with the micro sec level precision, and the largest
observed synchronization skew is 1.05 micro sec
when the buffer length is 256Bytes.

5.2 Results of HSS

This .subsection presents the analysis of HSS.
For simplicity, we focus on a full tree. We assume
that each nonterminal node of the tree, e.g. router,
uses only one link to reach to the next higher level
and all other links are used for other routers/
If k-port

m-2

network interfaces at a lower level
switch is used, the tree contains up to k * (k-1)
hosts.

With the default parameters used in Section 5.1,
the bounded synchronization skews are 1.42 micro
sec and 4.02 micro sec for a tree with 3 levels and
4 levels, respectively. Using the parameters, Table
4 shows the synchronizing interval and the time
overhead for a tree with 4 levels using 8-port
switches. The number of time slots to execute the
HSS, given by (the number of levels in a tree-2) *
2 * (the switch size-1)+1% (the switch size), is 36
time slots for such a tree. Comparing the expe-
rimental results with the SSS analysis in Section
5.1, the tables indicate that the synchronization cost
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Table 4 Experimental results for a tree with 4
levels when the packet length of 2 Kbytes
and the default parameters in [2] are used.

Synchronizing Time overhead (%)
Drift rate interval 4-port 8-port

(in time slots) switch switch
100ppm 1781 0.89 2.02
200ppm 890 1.79 4.04
300ppm 593 2.69 6.07
400ppm 445 3.59 8.08
500ppm 356 4.49 10.11

of HSS grows as the depth of the tree is increased.
Even with the
however, at the drift rate of 300ppm which is found

increased synchronization cost,
for most Myrinet networks, the largest time over—
head is 6.07% with 4 levels. This is still impressive,
considering those trees accommodate 392 hosts.
Figure 6 shows how bounded synchronization
skew changes while varying link bandwidth from
064 Gbps to 2.56 Gbps. Figures 6 suggests the
high link bandwidth yields the low synchronization
skew. The largest synchronization skew is 9.2
micro sec with the link bandwidth of 640Mbps,
which is also the largest observed synchronization
skew over all experiments of SSS and HSS. It
suggests that FBS achieves synchronization preci-
sion on the order of micro sec for a broad set of

practical networks.
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Figure 6 Synchronization skew with varying link
bandwidth from 0.64Gbps to 2.56Gbps for
8% 8 switches

6. Related Work

This section discusses previous efforts on synch-
ronization. FM-QoS[1], Isotach Networks[12] synch-
ronize multiple network interfaces of Myrinet
networks. FM-QoS investigated the basic idea of
FBS and illustrated its potential by implementing a
prototype for a single Mpyrinet switch. However,
FM-QoS is not enough to generalize the framework
of FBS

schedule for

it neither provided a synchronizing
arbitrary network topologies, nor
analyzed the synchronization skew.

Isotach networks provide a single logical time
base where each switch has a token manager to
exchange tokens with all network interfaces. When
the token manager receives token i from all the
network interfaces, representing a logical point in
time i, it sends token i +1 to all network interfaces
in turn. The primary drawback of Isotach networks
is that network resources cannot be fully utilized
by application communication streams since the
network interface serving as a token manager does
not perform application communications. Using an
Isotach network for an 8x8 Myrinet switch, 12.5%
network bandwidth is wasted. This cost is
significant, considering that the largest overhead of
FBS is 0.83% as shown in Table 3 for an 8x8
Myrinet switch.

7. Conclusion

This paper addressed the synchronization problem
of providing a global clock for multiple network
interfaces in system are networks. The basic notion
of FBS framework in FM-QoS[1] was generalized
to arbitrary networks, the idea of synchronizing
schedules were formalized and the skew of the
FBS model was analyzed. Based on the gene-
ralization, two network cases were studied : a
single switch network and a multiple switch
network. For each of the networks, the simple
synchronizing schedule(SSS) and the hierarchical
synchronizing schedule(HSS) were proposed with
their analyzed bounded skews. Given flow control
parameter values, the analyses directly lead to the
synchronization performance values. Using practical

flow control parameter values in [2], we observed
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the synchronization skew of FBS is on the order of

micro sec and its largest value is 9.223 micro sec.

Since many applications require guaranteed service,

especially multimedia applications which need

performance predictability on the order of a micro-

sec precision, the synchronization precision of FBS

is sufficient.
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