• Title/Summary/Keyword: Flow Network System

Search Result 962, Processing Time 0.036 seconds

Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (I);Influence of the Inlet-Outlet Pressure Ratio (정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구 (I);입출구 압력비 변화 영향)

  • Shin, C.H.;Ha, J.M.;Lee, C.G.;Her, J.Y.;Im, J.H.;Joo, W.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1448-1453
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. Especially, as there is not enough information to obtain reliable physical property values such as density, temperature etc. at the downstream of the pressure regulator, It is hard to calculate accurate solution in the pipeline network analysis. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done and the detail examinations and considerations of the pressure regulator as a pipeline network elements according to the variations of the inlet-outlet pressure ratio have been carried. Finally the flow-flied distributions, relations and critical-flow-characteristics have been studied. in detail and the 1D analytic method to analyze critical pipe flow have been investigated

  • PDF

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Performance Analysis of the Lubricating Oil Feed Pump by the Anslysis of the Flow Network (유로망 해석에 의한 윤활유 공급펌프 성능 해석)

  • Kil, Doo-Song;Lee, Young-Ho
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • In this paper, the cause of the discrepancy of the inlet and outlet flow of the lubricating oil feed pump was analyzed by the flow measurement and the analysis of the flow network. At first, we thought that the flow difference was induced by a leak in the middle of the flow network. But, through the flow measurement using ultrasonic flow meter and the performance analysis of the pump, we knew that the cause of the flow difference was due to a drop in efficiency of the pump according to the pressure drop of the outlet. Also, we knew that the shape of the piping had no effect on the efficiency of the pump.

  • PDF

Numerical Simulation of Oil Supply System of Reciprocating Compressor for Household Refrigerators (냉장고용 왕복동 압축기 급유 시스템의 수치해석)

  • Kim, H.J.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2005
  • For a reciprocating compressor of household refrigerators, a direct analogy between the pipe flow network and the electric circuit network has been utilized to set up a mathematical model for oil supply system. Individual lubrication elements of the oil supply system, such as propeller- installed oil cap, oil galleries, radial oil feeding holes, spiral oil grooves, and various sliding surfaces have been analogized by equivalent electric elements, and these have been combined together to form an electric circuit corresponding to the whole oil supply system. By solving the closed network equations of the model, oil flow rates at various lubrication elements could be obtained. Total amount of the oil flow rate drawn into the shaft has been measured and compared reasonably well with the prediction of the numerical simulation.

  • PDF

A Study on the Engine Lubrication System Analysis Adapting Discontinuous Oil Supply Crankshaft System (불연속 오일공급 크랭크샤프트 시스템을 채택한 엔진 윤활시스템의 해석)

  • 윤정의
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • This paper presents unsteady oil flow behaviors in the engine lubrication network to clarify the differences between continuous and discontinuous oil supply crankshaft system. Using commercial network analysis program, Flowmaster2, engine lubrication network system analysis were carried out. And effects of crankshaft speed and supplied oil pressure on pressure fluctuation in oil groove and oil flow rate to each bearing were analyzed.

Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (II);Influence of the Cross-Sectional-Area and Opening Ratio (정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구(II);단면적 및 개도 변화)

  • Shin, C.H.;Ha, J.M.;Lee, C.G.;Her, J.Y.;Im, J.H.;Joo, W.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1454-1459
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. When it is under working, the accurate analysis of the flow properties is so difficult. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done according to the variations of the opening ratio or cross-sectional area and the detail examinations and considerations of the pressure regulator as a pipeline network elements have been carried. Finally the flow-flied distributions and critical-flow-characteristics have been presented in detail and the critical flow phenomena and the relation to the opening ratio or cross-sectional-area ratio have been studied.

  • PDF

Sampling based Network Flooding Attack Detection/Prevention System for SDN (SDN을 위한 샘플링 기반 네트워크 플러딩 공격 탐지/방어 시스템)

  • Lee, Yungee;Kim, Seung-uk;Vu Duc, Tiep;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • Recently, SDN is actively used as datacenter networks and gradually increase its applied areas. Along with this change of networking environment, research of deploying network security systems on SDN becomes highlighted. Especially, systems for detecting network flooding attacks by monitoring every packets through ports of OpenFlow switches have been proposed. However, because of the centralized management of a SDN controller which manage multiple switches, it may be substantial overhead that the attack detection system continuously monitors all the flows. In this paper, a sampling based network flooding attack detection and prevention system is proposed to reduce the overhead of monitoring packets and to achieve reasonable functionality of attack detection and prevention. The proposed system periodically takes sample packets of network flows with the given sampling conditions, analyzes the sampled packets to detect network flooding attacks, and block the attack flows actively by managing the flow entries in OpenFlow switches. As network traffic sampler, sFlow agent is used, and snort, an opensource IDS, is used to detect network flooding attack from the sampled packets. For active prevention of the detected attacks, an OpenDaylight application is developed and applied. The proposed system is evaluated on the local testbed composed with multiple OVSes (Open Virtual Switch), and the performance and overhead of the proposed system under various sampling condition is analyzed.

Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan (실험에 의한 직교류홴의 유량 및 소음 분석)

  • Ahn, Cheol-O;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

Option of Network Flow Problem Considering Uncertain Arc Capacity Constraints (불확실한 arc용량제약식들을 고려한 네트워크문제의 최적화)

  • 박주녕;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.51-60
    • /
    • 1990
  • In this paper we deal with the miniaml cost network flow problem with uncertain arc capacity constraints. When the arc capacities are fuzzy with linear L-R type membership function, using parametric programming procedure, we reduced it to the deterministic minimal cost network flow problem which can be solved by various typical network flow algorithms. A modified Algorithm using the Out-of-kilter algorithm is developed.

  • PDF

Flow Network Analysis for the Flow Control of a Main Cooling Water System in the HANARO Fuel Test Loop (하나로 핵연료 시험 루프 주냉각수 계통의 유량 제어에 대한 유동 해석)

  • Park, Young-Chul;Lee, Yong-Sub;Chi, Dae-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.7-12
    • /
    • 2009
  • A nuclear fuel test loop(after below, FTL) is installed in the IRI of an irradiation hole in HANARO for testing the neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. There is an in-pile section(IPS) and an out-pile section(OPS) in this test loop. When HANARO is operated normally, the fuel loaded into the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain the operation conditions of the test fuel, a main cooling water system(MCWS) is installed in the OPS of the FTL. The MCWS is composed of a main cooler, a pressurizer, two circulation pumps, a main heater, an interconnection pipe line and instruments. The interconnection pipeline is a closed loop which is connected to an inlet and an outlet of the IPS respectively. The MCWS is under a cold function test during a start-up period. This paper describes the system flow network analysis results of the flow control of a main cooling water system in the HANARO fuel test loop. It was confirmed through the results that the flow was met the system design requirements.