• 제목/요약/키워드: Flow Mixing

검색결과 1,768건 처리시간 0.046초

임펠러 형상에 따른 교반기의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Mixer by Impeller Types)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.

진동교반조의 기하형상에 따른 유동상태와 혼합한계회전수 (Flow Patterns and Critical Circulation Frequency for Mixing in Shaking Vessels with Various Geometry)

  • 이영세;김문갑;김종식;우 타카후미;카도 요시히토
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.49-56
    • /
    • 2003
  • Based on the flow patterns of cylindrical vessel, the flow patterns of conical vessel, spherical vessel, rectangular vessel and cylindrical vessel with baffles were visualized by a trace method using aluminum powder. In addition, the correlations of the critical circulating frequency for mixing were derived from the experimental results. The conical and spherical vessels which have circular cross sections were same effective as cylindrical vessel for the shake mixing due to developing the rotational flow. Both a rectangular vessel and a cylindrical vessel with baffles should not be adapted for shake mixing because of not developing rotational flows in these type of vessels.

  • PDF

불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구 (Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge)

  • 송경석;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

산업용 교반기의 고체-액체 혼합에 대한 Eulerian Two-Phase 유동해석 (Eulerian Two-Phase Flow Analysis for Solid-Liquid Mixing in a Industrial Mixer)

  • 송애경;허남건;원찬식;안익진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2006
  • The Mixer is apparatus that help precipitation or an inhomogeneous distribution of various phases to be mixed and that user makes necessary material mixing one or the other. Mainly the mixer which is used from chemical and food industry is very important system in engineering that mixes the material. The inside flow of the mixer under the actual states which put a basis in flow of the fluid is formed rotation of the impeller. The inside flow of impeller will be caused by various reasons change with shape of impeller, number of rotation, mixing material and flow pattern of free surface etc. Also mixer study depended in single-phase flow and experimental research. So the numerical analysis of flow mixing solid-fluid particle is simulated. It is become known, that the case where agitator inside working fluid includes the solid particle the sinkage reverse which the solid particle has decreases an agitation efficiency. From the research which it sees the hazard solid which examines the effect where the change of the sinkage territory which it follows agitation number of revolution and diameter of the particle goes mad to an agitator inside flow distribution - numerical analysis the inside flow distribution of liquid state with Eulerian Two-Phase Method.

  • PDF

URANS를 이용한 가열된 이중제트의 유동혼합 특성에 대한 수치해석 (URANS Computations for Flow Mixing of Heated Dual Jets)

  • 박태선
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.18-27
    • /
    • 2019
  • 비정상 난류모델 (URANS)를 이용하여 가열된 이중제트의 유동혼합 특성에 대한 수치해석이 수행되었다. 압축성유동에서 난류확산이 크게 나타났고 비압축성 유동의 열확산이 압축성유동의 열확산 보다 크게 얻어졌다. 주파수와 위상궤적을 분석한 결과, 제트간격이 증가함에 따라 주기상태와 준주기상태가 관찰되었다. 제트간격이 클 경우 비정상유동구조가 제트유동 혼합의 특징을 결정하기 때문에 융합점과 결합점의 선형적 변화가 다르게 나타나는 것으로 관찰되었다.

Development of reference materials for cement paste

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.547-556
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) that are chemically stable and can simulate the flow characteristics of cement paste. To this end, the candidate components of RMs were selected considering the currently required properties of RMs. Limestone, slag, silica, and kaolin were selected as substitutes for cement, while glycerol and corn syrup were selected as matrix fluids. Moreover, distilled water was used for mixing. To select the combinations of materials that meet all the required properties of RMs, flow characteristics were first analyzed. The results revealed that silica and kaolin exhibited bilateral nonlinearity. When an analysis was conducted over time, slag exhibited chemical reactions, including strength development. Moreover, fungi were observed in all mixtures with corn syrup. On the other hand, the combination of limestone, glycerol, and water exhibited a performance that met all the required properties of RMs. Thus, limestone, glycerol, and water were selected as the components of the RMs. When the influence of each component of the RMs on flow characteristics was analyzed, it was found that limestone affects the yield value, while the ratio of water and glycerol affects the plastic viscosity. Based on this, it was possible to select the mixing ratios for the RMs that can simulate the flow characteristics of cement paste under each mixing ratio. This relationship was established as an equation, which was verified under various mixing ratios. Finally, when the flow characteristics were analyzed under various temperature conditions, cement paste and the RMs exhibited similar tendencies in terms of flow characteristics. This indicated that the combinations of the selected materials could be used as RMs that can simulate the flow characteristics of cement paste with constant quality under various mixing ratio conditions and construction environment conditions.

스태틱 믹서의 유동 및 혼합에 대한 연구 (A Study of Flow and Mixing in a Static Mixer)

  • 양희천;박상규;엄용석;라병열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.557-562
    • /
    • 2001
  • Fluid mixing is ubiquitous and essential in many natural and industrial systems. Understanding the mixing processes that occur in these diverse system is essential for predicting many aspects of practical importance. The objective of this study is to perform the experimental and numerical investigation of the flow and mixing in a static mixer. Three different types of mixing elements, Sulzer, SSM and PPM were used. Glycerin and hydraulic oil were used as mixing fluids. Pressure drop was measured using a manometer.

  • PDF

인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구 (A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating)

  • 이호상;김동미
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.