• 제목/요약/키워드: Flow Mixing

검색결과 1,768건 처리시간 0.033초

Dual-plane Stereoscopic PIV Measurement on the Lobed Jet Mixing Flow

  • SAGA Tetsuo;KOBAYASHI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.108-122
    • /
    • 2001
  • In a continuing effect to study the mixmg enhancement by large-scale streamwise vortices in lobed mixing flows, an advanced PIV system named as dual-plane stereoscopic PIV system was used in the present study to conduct simultaneous vorticity (all three components) measurement of an air jet exhausted from a lobed nozzle. Unlike 'classical' 2-D PIV system or conventional 'single-plane' stereoscopic PIV system, the dual-plane stereoscopic PIV system used in the present study can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously. Therefore, it can provide the distributions of all the three components of vorticity vectors instantaneously and simultaneously. The evolution and interaction characteristics of the large-scale streamwise vortices and azimuthal Kelvin-Helmholtz vortices in the lobed jet mixing flow were revealed instantaneously and quantitatively from the measurement results of the dual-plane stereoscopic PIV system. The characteristics of the mixing process in the lobed jet mixing flow were analyzed based on the simultaneous measurement results of the steamwise vorticity and azimuthal Kelvin-Helmholtz vorticity distributions.

  • PDF

초음속 유동장 내 연료 다중 분사의 혼합 특성 (Mixing Characteristics of Multiple Injection in Supersonic Flow)

  • 이종환;이상현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2004
  • The mixing characteristics of a multiple transverse injection system in a scramjet combustor were studied with numerical methods. The distance among injectors on mixing characteristics were investigated. The three-dimensional Wavier-Stokes equations including k-w SST turbulence model were solved. It was shown that the mixing characteristics of a multiple transverse injection system were very different from those of a single and a dual injection system; the rear injection flow was strongly influenced by blocking effect due to the momentum flux of the front injection flow and thus had higher expansion and penetration than the front injection flow. The multiple injection system had higher mixing rate, higher penetration but had more losses of stagnation pressure than the single injection system.

  • PDF

레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구 (A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method)

  • 김경천;정은호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구 (EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE)

  • 서용권;허형석;강금분
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.

패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측 (Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking)

  • 김세훈;권세진
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.61-66
    • /
    • 2005
  • 혼합챔버 내에서 패브리 초킹(Fabri choking)이 발생한다는 가정을 이용하여 이차목을 갖는 환형분사 초음속 이젝터의 이론 해석을 수행하였다. 부유동 압력을 예측하기 위해 혼합챔버 입구에서 패브리 초킹면 사이를 비혼합 이론(non mixing theory)을 이용하여 계산하였다. 혼합챔버의 수축각에 의해 발생하는 깔때기 모양의 경사충격파를 이차원 경사충격파로 모사하였고, 패브리 초킹면의 주유동에만 영향을 미친다고 가정하였다. 또한 패브리 초킹면의 주유동 압력과 부유동 압력이 같다는 물리적인 제한조건을 사용하였다. 그 결과 혼합챔버의 수축각이 4도보다 작은 조건에서 실험값을 잘 예측하는 것을 확인하였다.

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes)

  • 이공희;정애주
    • 대한기계학회논문집B
    • /
    • 제40권5호
    • /
    • pp.329-337
    • /
    • 2016
  • 연료집합체의 지지격자에 설치된 혼합날개는 난류 강화 기구로서 부수로 내부에서 선회류 또는 연료봉 간극사이에서 횡류를 발생시켜 대류열전달을 증진시키는 역할을 한다. 따라서 혼합날개의 기하학적인 형상 및 배열 형태는 혼합날개의 성능을 결정하는 중요한 인자이다. 본 연구에서는 OECD/NEA의 벤치마크 계산에서 활용된 분할 형태의 혼합날개가 장착된 $5{\times}5$ 연료집합체 내부에서의 유동분포 특성을 파악하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.14를 사용하여 계산을 수행하였고, 계산결과를 MATiS-H 시험장치의 측정값과 비교하였다. 또한 분할 형태의 혼합날개 형상이 연료집합체 내부유동 형태에 미치는 영향에 대해 설명하였다.

상하좌우 복합유동 유도를 통한 고효율 HVM 마이크로 믹서 설계에 관한 연구 (A Study on Design of an Effective Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion)

  • 유원설;김성진;강석훈;김판근;박상후
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.751-757
    • /
    • 2011
  • Subminiature devices such as Lab-on-a-chip and p-TAS(Micro Total Analysis System) have been intensively studied in biotechnology and chemistry, In many cases, a micromixer was widely used to mix different solutions for synthesizing novel materials. However, in microfluidic system, there is generally a laminar flow under very small Reynolds number so it is difficult to mix each solution perfectly. To settle this problem, we propose a new mixing mechanism which generates a horizontal and vertical multi-mixing (HVM) flow for effective mixing within a short mixing section. We evaluated the proposed mechanism using CFD analysis, and the results showed that the HVM mechanism had a relative high-effectiveness comparing to the existing methods.

화력발전 배가스 탈질 환원제의 혼합특성 (A Mixing Characteristic of De-NOx Reducing Agent for Flue Gas in Thermal Power Generation)

  • 최항석;김관태;김석준;정상현;송영훈;홍성호;이준엽
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.79-85
    • /
    • 2006
  • In this study, to increase the mixing between flue gas and reducing agent, new shapes of $NH_3$ ejection nozzles are designed and experimentally and numerically tested. The nozzles have six holes perpendicular to the ambient flue gas flow and the tilting angle between direction of ambient flow and the hole axis is varied. To evaluate the mixing efficiency of the proposed nozzles, numerical and experimental tests are applied to several flow conditions comparing with single hole nozzle, which is commonly used in conventional SCR process. From the results the nozzle with tilted multi-holes has the large region of high turbulent intensity compared with conventional single hole nozzle. This is originated from the high vorticity near the upstream of the jet flow issuing from the hole. The high turbulent intensity and vorticity magnitude lead to enhanced mixing between flue gas and reducing agent. Hence, the most suitable moral ratio between NOx and reducing agent for the catalytic reaction can be obtained on behalf of the intensified scalar mixing within shorter physical mixing length.

  • PDF

배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구 (A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF