• Title/Summary/Keyword: Flow Measuring Accuracy

Search Result 121, Processing Time 0.04 seconds

Ultrasonic Transducers for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서)

  • Kim, Ju Wan;Piao, Chunguang;Kim, Jin Oh;Park, Doo-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.559-567
    • /
    • 2015
  • The paper deals with an ultrasonic transducer invented for measuring both flow velocity and pipe thickness. The structure of the transducer is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer additionally generates ultrasonic waves transmitting vertically to a pipe for measuring pipe thickness. By measuring flow velocity with the invented transducer and a conventional oblique-incidence transducer and comparing their results, the accuracy of the flow velocity measurement of the invented one was evaluated. By measuring specimen thickness with the invented transducer and a conventional normal-incidence transducer and comparing their results, the accuracy of the thickness measurement of the invented one was evaluated.

Measurement of Hydraulic Pump Flow Ripple Characteristics Based on the ISO 10767-1 and the Evaluation of the Measuring Accuracy (ISO 10767-1에 기초한 유압 펌프의 유량 맥동 측정 및 정밀도 평가)

  • Kim, J.W.;Kang, M.G.;Lee, I.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.22-27
    • /
    • 2007
  • The source flow ripple and the source impedance in hydraulic pump are characteristic values showing fluid-borne vibration characteristics decisively. We cannot measure these two characteristic values directly, but can measure them by some indirect methods. One representative indirect measuring method is ISO 10767-1. The authors constructed a hardware and a software for the measuring method based on ISO 10767-1. Through the error evaluation of the measured results, accuracy of the measuring method using ISO 10767-1 was examined in detail.

  • PDF

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

The Effects of Pressure and Specific Heat on the Performance of Thermal Mass Flowmeter (열량형 질량유량계에 대한 압력과 비열 영향)

  • Choi, Y. M,;Park, K. A.;Choi, H. M.;Lee, K. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.109-113
    • /
    • 1999
  • Thermal mass flow meter (TMF) is used measuring the small mass flow rate of gases. Generally, flow rate measuring accuracy of TMF is $\pm2{\%}$ of full scale. TMF is manufactured for specified working pressure and specified working gas by customer. If it were applied for different working pressure and gases, flow rate measurement accuracy decreased dramatically. In this study, a TMF tested with three different gases and pressure range of 0.2 MPa to 1.0 MPa. Effect of specific heat cause to increase flow measurement error as much as ratio of specific heat compare with reference gas. Pressure change cause to increase flowrate measurement deviation about $-0.2{\%}$ as the working pressure decreased 0.1 MPa.

  • PDF

Development of Thermal Mass Flow Meter (열전달 질량유량계 개발)

  • Chi, Daesung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.118-122
    • /
    • 1999
  • Thermal mass flow meter was developed using principle of convective heat transfer. The advantage of thermal mass flow meter is measuring mass flow directly, therefore, it is not required to use densitometer or temperature/pressure and DP gages. The final accuracy of this thermal mass flow meter is $\pm1.0{\%}$ or better, reproducibility is $\pm0.2{\%}$, and the response time is 600 ms. The thermal mass flow meter was developed from a single point to multi-points (maximum is 9 points), and the number of points is determined according to desired accuracy and size of piping/duct. Since this thermal mass flow meter adopted microprocessor based design, it is intrinsically accurate, self-error detectable, and has self-diagnosis function. The applications of this thermal mass flow meter are for measurement and control of HVAC air flow, other gas flow, and liquid flow.

  • PDF

Three-Dimensional Flow Analysis for Estimation of Measuring Error oi Orifice Flowmeter due to Swirling Flow (선회로 인한 오리피스 유량계의 계량오차 예측을 위한 삼차원 유동해석)

  • Kim Hong-Min;Kim Kwang-Yong;Her Jae-Young;Ha Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.79-82
    • /
    • 2002
  • Three-dimensional pipe flows with elbows and tees for few different pipe fittings are calculated to estimate the effect of swirling flow on measuring accuracy of orifice flow meter. It is evaluated how the pressure difference across the orifice is dependent on the length of upstream straight pipe in a branch and how swirl intensity, swirl angel and axial velocity distribution affect the measuring error of orifice flowmeter. From the results, it is found that, regardless of flow rate specified in this calculation, the effect of the straight pipe length can be neglected for the lengths larger than thirty diameters although there still remain significant swirl at the orifice

  • PDF

Measurement of optical flow using horn and anandan techniques (Horn과 Anandan기법을 이용한 Optical flow 측정)

  • 송석진;남기곤;이장명
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.685-688
    • /
    • 1998
  • Measurement of optical flow is a core problem of matching through the analysis of image sequences. In this paper, horn's and anandan's techniques are analyzed to derive a better technique for matching. Experimental results show that Horn's technique has low accuracy in measuring the velocity of optical flow while anandan's technique has poor performaance for diverging images. Based upon this observation, a new technique for the measurement of optical flow is proposed.

  • PDF

A Study on the Trapezoidal Cutthroat Flumes for Measuring Flow in Open-Channels (개수로의 유량 측정을 위한 제형 Cutthroat Flume에 관한 연구)

  • 윤주상;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.4
    • /
    • pp.4533-4543
    • /
    • 1977
  • The purpose of this study was to investigate and compare flow discharges of rectangular, V-notch and trapezoidal type of cutthrooat flumes, and the published data for trapezoidal parshall flumes. And the trapezoidal cutthroat flumes were also compared in their accuracy of discharge measurements for various convergence ratios in the inlet section and divergence ratios in the outlet section. Five flumes were studied, and all the flumes were 45cm long with flat-bottom and were made of well-finished transparent acryl plate of 3mm thickness. One rectangular, one V-notch and three trapezoidal types were numbered 1 to 5 as shown in Fig. III-1. The measured depth of water was ranged from 5 to 20cm. The results obtained in this study are summarized as follows: 1. The general discharge equations for tested prototypes are listed for free flow in Table IV-1 and for submergence flow in Table IV-4. 2. In both free and submerged flow, the accuracy of the discharge formula obtained by this test is highly significant at 1% level as shown in Table IV-2 and Table IV-6. The accuracy of disharges measured depends upon the convergence and divergence ratios in the trapezoidal types: the less the ratios of convergence as well as divergence, the lower the accuracy. 3. Submergence ratios tend to increase in the order of flume number except flume No. 4. This implies that trapezoidal cutthroat flumes are more acceptable than rectangular or V-notch ones for free flow. 4. The transition submergence for the trapezoidal Parshall flumes ranges from 80-85 percent, which is slightly higher than the tested flume. However, the trapezoidal cutthroat flume No. 5 has higher transition submergence ratio, ranging from 73-78 percent, than other trapezoidal ones. The difference between the trapezoidal Parshall flumes and the trapezoidal cutthroat flumes in transition submergence seems small enough to be ignored in their field use. 5. Trapezoidal cutthroat flume is simple and economical to construct in existing openchannels whose shapes are generally trapezoidal. In order to obtain the best rating accuracy, flume No. 3 among the tested trapezoidal types is recommended, because it shows the highest accuracy for both free and submerged flow.

  • PDF

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

Measurement of Water Flow in Closed Conduits by Chemical Tracer Method (추적자를 이용한 유량 측정)

  • Lee, Sun-Ki;Chung, Bag-Soon;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.19-26
    • /
    • 1999
  • Thermal output in a nuclear power plant is verified with calorimetric heat balance on the secondary plant. The calorimetry involves the precise measurement of the feedwater flow rate. However, the correct indication of feedwater flow rate obtained by a pressure-difference measurement across a venturi can be affected by instrument errors, fouling or a poorly developed velocity profile. This can result in an inaccurate mass flow rate and consequently an inaccurate estimate of power. The purpose of this study is to develop verification methods with accuracy better than $0.5\%$ for high precision flow measurement to be used for measuring feedwater flow rate. This chemical tracer method is a testing process that uses tracers which can be applied to quantify losses in electrical output due to the incorrect measurements of feedwater flow rate. And this system has good response to the variation of the flow rate. Accuracy of better than 0.5 percent can be expected for feedwater flow measurement, providing that the system can be stabilized during the test. This methodology is applicable to other flow systems well.

  • PDF