• Title/Summary/Keyword: Flow Inertia

Search Result 201, Processing Time 0.025 seconds

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Performance Analysis of Pneumatic Device for Verification of Canard Deployment Performance (날개의 전개성능 확인을 위한 공압식 시험장치 성능 해석)

  • Lee, Donghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2016
  • In this paper, a pneumatic device for the deployment performance verification of canards deployed by inertia has been designed and the performance of the pneumatic device has been proven through analysis and tests. The pneumatic conveying process, orifice opening process and piston movement process of the pneumatic device were investigated by using numerical methods. The orifice diameter, pressure in a pressure tank and type of gas were regarded as the main design parameters of the pneumatic device. The error rate between analysis and test results under the same conditions was within 4 %. The accuracy of numerical methods used in this study were validated.

The dynamic effects of intake system on the engine performance (흡기계의 동적효과가 기관성능에 미치는 영향)

  • 조진호;김병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-93
    • /
    • 1987
  • The intake system of 4-cycle, 4-cylinder reciprocating engine is investigated the simple model composed of vessel, duct and throttling part. The numerical calculation based on the simulation is performed for the flow phenomena including heat transfer, friction and bend of duct at each part. In the multi-cylinder engine, the volumetric efficiency is increased a little as the junction location is closed to cylinder at the engine speed having maximum volumetric efficiency. The configuration and dimension of intake system have an influence on the inertia effect by resistance and pressure variation, and the magnitude of that is varied by the engine speed. Thus the volumetric efficiency is correlative to them. The volumetric efficiency is high as the intake valve close is advanced at the low engine speed, and is delayed at high speed.

  • PDF

Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상)

  • 한승헌;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.269-272
    • /
    • 2004
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

  • PDF

SEA of Coupled Beams considering Finite Mobility of Excited Subsystem (가진 하부시스템의 유한 모빌리티를 고려한 연성 보의 SEA 적용)

  • Lim, Jong-Yun;Hong, Suk-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.79-83
    • /
    • 2005
  • SEA is a useful tool to predict noise and vibration response in high frequency region but has a weak point not to be able to express modal behavior in low frequency region. For a structure with middle subsystem having relatively higher modal density than excited subsystem and receiving subsystem, we studied the possibility that the modal behavior of receiving subsystem can express by considering finite mobility of excited subsystem. For a simply three-coupled beams which is chosen for feasibility study, the response of receiving beam was investigated with varying the length & area moment of inertia of middle beam. In case that the middle beam has relatively higher modal density than exciting beam, the application to finite mobility of excited beam led to express modal behavior of receiving beam relatively well.

  • PDF

Numerical study on flow characteristics at dividing open-channel with changing bifurcation angle using TELEMAC-2D (TELEMAC-2D모형을 이용한 분류각 변화에 따른 개수로 흐름특성변화 수치모의 연구)

  • Jung, Daejin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.617-626
    • /
    • 2020
  • This study investigates changes of bifurcation discharge ratio, flow velocity distributions and characteristics of separation zone due to variation of bifurcation angle by using TELEMAC-2D model. When the bifurcation angle is reduced from 90° to 45° without changing the boundary conditions, the bifurcation discharge ratio increased by 1.5 times from 0.523 to 0.785 because of increasing the radius of curvatures, the inertia force of the downstream flow, and the pressure gradient by the downstream boundary conditions. The bifurcation discharge ratio increases non-linearly whenever the bifurcation angle decreases by 15° intervals from 90° to 45° in flow with the upstream Froude number of 0.45 to 0.74. In flow with a maximum Froude number of 0.74, the rate of increase for bifurcation discharge ratio is 31.1% and the minimum value. When the Froude number is 0.58, the bifurcation discharge ratio is 0.7 or less, and the maximum rate of increase for that ratio is 53.5%. As the upstream Froude number decreases less than 0.58, the bifurcation discharge ratio exceeds 0.7, and the rate of increase decreases. When the upstream Froude number is 0.4 higher, the dimensionless width and length changing ratio of the separation zone are about 2.56 and 5.5 times higher than in 0.4 or less.

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

A Study on the Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상 연구)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.204-209
    • /
    • 2005
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

Coherent Structure Extraction from 3-Dimensional Isotropic Turbulence Velocity Field Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 3차원 등방성 난류속도장의응집구조 추출)

  • Lee, Sang-Hwan;Jung, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1032-1041
    • /
    • 2004
  • In this study we decompose the 3-dimensional velocity field of isotropic turbulent flow into the coherent and the incoherent structure using the discrete wavelet. It is shown that the coherent structure, 3% wavelet modes, has 98% energy and 88% enstrophy and its statistical characteristics are almost same as the original turbulence structure. And it is confirmed that the role of the coherent structure is that it produces the turbulent kinetic energy at the inertia range then transfers energy to the dissipation range. The incoherent structure, with residual wavelet modes, is uncorrelated and has the Gaussian probability density function but it dissipates the kinetic energy in dissipation range. On the procedure, we propose a new but easy way to get the threshold by applying the energy partition percentage concept about coherent structure. The vorticity field extracted from the wavelet-decomposed velocity field has the same structure as the result of the precedent studies which decomposed vorticity field directly using wavelet. Therefore it has been shown that velocity and vorticity field are on the interactive condition.