DOI QR코드

DOI QR Code

Numerical study on flow characteristics at dividing open-channel with changing bifurcation angle using TELEMAC-2D

TELEMAC-2D모형을 이용한 분류각 변화에 따른 개수로 흐름특성변화 수치모의 연구

  • Jung, Daejin (Large-scale Land Reclamation Office of Korea Rural Community Cooperation) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Jung, Kwansue (Department of Civil Engineering Chungnam National University)
  • 정대진 (한국농어촌공사 대단위간척처) ;
  • 장창래 (한국교통대학교 토목공학과) ;
  • 정관수 (충남대학교 토목공학과)
  • Received : 2019.12.16
  • Accepted : 2020.07.07
  • Published : 2020.08.31

Abstract

This study investigates changes of bifurcation discharge ratio, flow velocity distributions and characteristics of separation zone due to variation of bifurcation angle by using TELEMAC-2D model. When the bifurcation angle is reduced from 90° to 45° without changing the boundary conditions, the bifurcation discharge ratio increased by 1.5 times from 0.523 to 0.785 because of increasing the radius of curvatures, the inertia force of the downstream flow, and the pressure gradient by the downstream boundary conditions. The bifurcation discharge ratio increases non-linearly whenever the bifurcation angle decreases by 15° intervals from 90° to 45° in flow with the upstream Froude number of 0.45 to 0.74. In flow with a maximum Froude number of 0.74, the rate of increase for bifurcation discharge ratio is 31.1% and the minimum value. When the Froude number is 0.58, the bifurcation discharge ratio is 0.7 or less, and the maximum rate of increase for that ratio is 53.5%. As the upstream Froude number decreases less than 0.58, the bifurcation discharge ratio exceeds 0.7, and the rate of increase decreases. When the upstream Froude number is 0.4 higher, the dimensionless width and length changing ratio of the separation zone are about 2.56 and 5.5 times higher than in 0.4 or less.

본 연구에서는 TELEMAC-2D를 이용하여 개수로 분류부에서 분류각과 분류유량비 변화에 따른 유속분포, 흐름분리구역의 크기, 분류각과 유량비 변화의 상관관계를 파악하였다. 상·하류단 경계조건의 변화 없이 분류각만 90°에서 45°로 감소하면 주흐름에서 분리되어 분류수로로 유입되는 흐름의 곡률반경이 증가하고 급격한 흐름방향의 전환에 의한 에너지손실은 감소하며, 주수로와 분류수로 하류방향으로 흐르는 흐름의 관성력과 하류단 경계조건에 의한 압력경사의 영향으로 분류수로에 유입되는 분류유량비가 0.523에서 0.785로 약 1.5배 증가하였다. 분류부 상류 유입흐름의 프루우드 수가 F1 = 0.45~0.74인 흐름에서 분류각을 90°에서 45°로 15° 간격으로 감소할 때마다 분류유량비는 각각 6~10%, 17~30%, 32~54%로 비선형적으로 증가하며, F1가 최대 0.74인 흐름에서 분류유량비 증가율이 31.1%로 최소값을 나타내고 F1 = 0.58 일 때 분류유량비가 0.7 이하이면서 최대 분류유량비 증가율 53.5%을 나타내며, F1이 0.58보다 감소할수록 분류유량비가 0.7을 초과하면서 그 증가율도 함께 감소하게 된다. F1 > 0.4인 흐름은 F1 < 0.4의 흐름보다 무차원 흐름분리구역의 폭(SW/B) 변화율은 약 2.56배 높으며 무차원 흐름분리구역 길이(SL/B) 변화율은 약 5.5배 높게 나타난다.

Keywords

References

  1. Afrouz, A., Heidarnejad, M., Aghamajidi, M., and Jalilian, H. (2015). "Effect study of water intaking angle through flow regime at straight canal." Larhyss Journal, Vol. 23, pp. 203-211.
  2. American Institute of Aeronautics and Astronautics (AIAA) (1998). Guide for the verification and validation of computational fluid dynamics simulations. AIAA Report, G-077-1998, VA, U.S., pp. 1-19.
  3. Alomari, N.K., and Khaleel, M.S. (2012). "Laboratory study of the effect of the branching angle and the branching channel slope on flow." Al-Rafadain Engineering Journal, Vol. 20, No. 5, pp. 33-41.
  4. Bulle, H. (1926). Untersuchungen uber die Geschiebeableitung bei der Spaltung von Wasserlaufen. VDI Verlag, Berlin (in German).
  5. De Heer, A., and Mosselman, E. (2004). "Flow structure and bedload distribution at alluvial diversions." River Flow 2004, Second International Conference on Fluvial Hydraulics, Napoli, Italy, pp. 801-806.
  6. Hardy, R.J., Lane, S.N., Ferguson, R.I., and Parsons, D.R. (2003). "Assessing the credibility of a series of computational fluid dynamic simulations of open channel flow." Hydrological Processes, Vol. 17, No. 8, pp.1539-1560. https://doi.org/10.1002/hyp.1198
  7. Hsu, C.C., Tang, C.J., Lee, W.J. and Shieh, M.Y. (2002). "Subcritical $90^{\circ}$ equal-width open-channel dividing flow." Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 7, pp. 716-720. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(716)
  8. EDF-R&D (2014). "TELEMAC-2D software user manual release 7.0."
  9. El Kadi Abderrezzak, K., and Paquier, A. (2009). "Discussion of "Numerical and experimental study of dividing open-channel flows" by AS ramamurthy, junying qu, and diep vo." Journal of Hydraulic Engineering, ASCE, Vol. 135, No. 12, pp. 1111-1112. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000009
  10. Ghostine, R., Vazquez, J., Terfous, A., Riviere, N., Ghenaim, A., and Mose, R. (2013). "A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions." Applied Mathematics and Computation, Vol. 219, No. 10, pp. 5070-5082. https://doi.org/10.1016/j.amc.2012.11.048
  11. Jung, D.J., Jang, C. L., and Jung, K. S. (2016). "Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D." Journal of Korea Water Resources Association, Vol. 49, No. 7, pp. 635-644. https://doi.org/10.3741/JKWRA.2016.49.7.635
  12. Jung, D.J., Jang, C.L., and Jung, K.S. (2019). "Numerical analysis of flow characteristics at the bifurcation channel by changing of discharge ratio using TELEMAC-2D." Journal of Korea Water Resources Association, Vol. 52, No. 1, pp. 1-10.
  13. Kasthuri, B. and Pundarikanthan, N.V. (1987). "Discussion on Separation Zone at Open Channel Junction." Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 4, pp. 543-548. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(543)
  14. Keshavarzi, A., and Habibi, L. (2005). "Optimizing water intake angle by flow separation analysis." Irrigation and Drainage, Vol. 54, No. 5, pp. 543-552. https://doi.org/10.1002/ird.207
  15. Kleinhans, M.G., Ferguson, R.I., Lane, S.N., and Hardy, R.J. (2013). "Splitting rivers at their seams: bifurcations and avulsion." Earth Surface Processes and Landforms, Vol. 38, No. 1, pp. 47-61. https://doi.org/10.1002/esp.3268
  16. Lai, Y.G. (2010). "Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh." Journal of Hydraulic Engineering, ASCE, Vol. 136, No. 1, pp. 12-23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000134
  17. Lai, Y.G. and Wu, K. (2019). "A three-dimensional flow and sediment transport model for free-surface open channel flows on unstructured flexible meshes." Fluids, Vol. 4, No. 1, p. 18. https://doi.org/10.3390/fluids4010018
  18. Law, S.W. and Reynolds, A.J. (1966). "Dividing Flow in Open Channel." Journal of Hydraulic Division, Vol. 92, No. 2, pp. 207-231.
  19. Lila, H. and AliReza, K. (2006). "Bed scouring and fish habitats at dam-less river water intake." Journal of Fisheries and Aquatic Sciences, Vol. 1, No. 1, pp. 32-53.
  20. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Third modification plan of water vision 2020. No. 11-1613000-001716-13, pp. 59-96.
  21. Neary, V.S. and Odgaard, A. (1993). "Three-dimensional flow structure at open-channel diversions." Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 11, pp. 1223-1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223)
  22. Pirestani, M.R., Vosoghifar, H.R., and Jazayeri, P. (2011). "Evaluation of optimum performance of lateral intakes." World Academy of Science, Engineering and Technology, Vol. 5, No. 8, pp. 301-305.
  23. Ramamurthy, A., Qu, J., and Vo, D. (2007). "Numerical and experimental study of dividing open-channel flows." Journal of Hydraulic Engineering, ASCE, Vol. 133, No. 10, pp. 1135-1144. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135)
  24. Rao, N.L. and Sridharan, K. (1967). "Division of flow in open channels." Water and Energy International, Vol. 24, No. 4, pp. 393-407.
  25. Schielen, R.M.J., Havinga, H., and Lemans, M. (2008). "Dynamic control of the discharge distributions of the Rhine river in the Netherlands." Proceedings of River flow 2008: Forth International Conference on Fluvial Hydraulics, Izmir, Turkey, pp. 395-404.
  26. Shettar, A.S., and Murthy, K.K. (1996). "A numerical study of division of flow in open channels." Journal of Hydraulic Research, Vol. 34, No. 5, pp. 651-675. https://doi.org/10.1080/00221689609498464