• Title/Summary/Keyword: Flow Detection

Search Result 1,247, Processing Time 0.037 seconds

Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System (첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현)

  • Yoon, Kyung-Han;Jung, Yong-Chul;Cho, Jae-Chan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.544-551
    • /
    • 2015
  • In this paper, the design and implementation results of the optical flow estimator (OFE) for moving object detection (MOD) in advanced driver assistance system (ADAS). In the proposed design, Brox's algorithm with global optimization is considered, which shows the high performance in the vehicle environment. In addition, Cholesky factorization is applied to solve Euler-Lagrange equation in Brox's algorithm. Also, shift register bank is incorporated to reduce memory access rate. The proposed optical flow estimator was designed with Verilog-HDL, and FPGA board was used for the real-time verification. Implementation results show that the proposed optical flow estimator includes the logic slices of 40.4K, 155 DSP48s, and block memory of 11,290Kbits.

Offline Based Ransomware Detection and Analysis Method using Dynamic API Calls Flow Graph (다이나믹 API 호출 흐름 그래프를 이용한 오프라인 기반 랜섬웨어 탐지 및 분석 기술 개발)

  • Kang, Ho-Seok;Kim, Sung-Ryul
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.363-370
    • /
    • 2018
  • Ransomware detection has become a hot topic in computer security for protecting digital contents. Unfortunately, current signature-based and static detection models are often easily evadable by compress, and encryption. For overcoming the lack of these detection approach, we have proposed the dynamic ransomware detection system using data mining techniques such as RF, SVM, SL and NB algorithms. We monitor the actual behaviors of software to generate API calls flow graphs. Thereafter, data normalization and feature selection were applied to select informative features. We improved this analysis process. Finally, the data mining algorithms were used for building the detection model for judging whether the software is benign software or ransomware. We conduct our experiment using more suitable real ransomware samples. and it's results show that our proposed system can be more effective to improve the performance for ransomware detection.

An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles' Time Headway Data (개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론)

  • Kim, Dong Min;Shim, Jisup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.17-32
    • /
    • 2022
  • This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles' time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

Optimization of ultra-fast convection polymerase chain reaction conditions for pathogen detection with nucleic acid lateral flow immunoassay

  • Kim, Tae-Hoon;Hwang, Hyun Jin;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to $3{\mu}M$ or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, $2{\mu}M$ of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

Optical Flow-Based Marker Tracking Algorithm for Collaboration Between Drone and Ground Vehicle (드론과 지상로봇 간의 협업을 위한 광학흐름 기반 마커 추적방법)

  • Beck, Jong-Hwan;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.107-112
    • /
    • 2018
  • In this paper, optical flow based keypoint detection and tracking technique is proposed for the collaboration between flying drone with vision system and ground robots. There are many challenging problems in target detection research using moving vision system, so we combined the improved FAST algorithm and Lucas-Kanade method for adopting the better techniques in each feature detection and optical flow motion tracking, which results in 40% higher in processing speed than previous works. Also, proposed image binarization method which is appropriate for the given marker helped to improve the marker detection accuracy. We also studied how to optimize the embedded system which is operating complex computations for intelligent functions in a very limited resources while maintaining the drone's present weight and moving speed. In a future works, we are aiming to develop collaborating smarter robots by using the techniques of learning and recognizing targets even in a complex background.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.

Detecting the HTTP-GET Flood Attacks Based on the Access Behavior of Inline Objects in a Web-page Using NetFlow Data

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.1-8
    • /
    • 2016
  • Nowadays, distributed denial of service (DDoS) attacks on web sites reward attackers financially or politically because our daily lifes tightly depends on web services such as on-line banking, e-mail, and e-commerce. One of DDoS attacks to web servers is called HTTP-GET flood attack which is becoming more serious. Most existing techniques are running on the application layer because these attack packets use legitimate network protocols and HTTP payloads; that is, network-level intrusion detection systems cannot distinguish legitimate HTTP-GET requests and malicious requests. In this paper, we propose a practical detection technique against HTTP-GET flood attacks, based on the access behavior of inline objects in a webpage using NetFlow data. In particular, our proposed scheme is working on the network layer without any application-specific deep packet inspections. We implement the proposed detection technique and evaluate the ability of attack detection on a simple test environment using NetBot attacker. Moreover, we also show that our approach must be applicable to real field by showing the test profile captured on a well-known e-commerce site. The results show that our technique can detect the HTTP-GET flood attack effectively.