• Title/Summary/Keyword: Flow Control Forming

Search Result 105, Processing Time 0.036 seconds

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.63-67
    • /
    • 2009
  • The previous work (Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the Beam-forming measurement system (B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

  • PDF

Drag Reduction of a Three-Dimensional Car Model Using Passive Control Device (수동제어 장치를 이용한 3 차원 자동차 모형의 항력감소)

  • Yi, Wook;SaGong, Woong;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2868-2872
    • /
    • 2007
  • In this study, a passive control using a boat-tail device is conducted for a three-dimensional car model in ground proximity. We consider various boat-tails and investigate the mechanism of drag reduction by them. By varying the length and slant angle of boat-tail, we obtain drag reductions up to 40%. From the oil-surface flow visualization and hot-wire measurement, the drag reduction by the boat-tail is characterized by the shear-layer instability and reattachment on the boat-tail, forming a small separation bubble at the upstream part of boat-tail surface, resulting in the delay of main separation and drag reduction. At high slant angles, the flow fully separates and drag is nearly same as that of no control.

  • PDF

3-D Finite Element Analysis of Superplastic Blow Forming (초소성재료의 압력성형에 관한 삼차원 유한요소해석)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes (탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Jeong, Gwan-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

The Effect of the Drawbead Shape on the Sheet Metal Forming Process (드로우비드 형상에 따른 박판 성형공정에 미치는 영향에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1624-1632
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defe cts such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

The influence of Mixture Flow and the Ignition Conditions on the Initial Flame Propagation Characteristics (혼합기의 유동 및 점화조건에 따른 초기화염의 전파특성)

  • Kim, Jin-Young;Lee, Joong-Soon;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-64
    • /
    • 1999
  • Initial flame development and propagation were visualized under the new ignition system developed to estimate the effects of ignition characteristics on the engine performance in a port injection SI engine. Effects of intake air flow characteristics were also investigated by three different kinds of the swirl control valve. Experiments were performed in an optical single cylinder engine modified form a commercial engine. Flame images were captured through the quartz window mounted in the piston by the high speed video camera and analyzed to compare initial flame development. Results show that IMEP tends to rise slightly as the ignition duration gets longer. The direction of flame propagation is decisively governed by the in-cylinder flow motion. Every flame grows toward the exhaust valve forming a kind of turbulent flame. Initial flame propaagation characteristics are very similar to ones analyzed form pressure data.

  • PDF

The study on the flow defect of cold combined forward-backward extrusion product (${\cdot}$후방 압출 제품의 유동 결함에 관한 연구)

  • Hwang S. H.;Lee D. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.79-82
    • /
    • 1999
  • This paper presents a study of cold combined forward-backward extrusion product. The case of product with thin wall in piercing process occur defects of deformation and breakdown during piercing process and the center web of product with thin thickness cause flow defect. Such defect is made by the difference of material flow. Methods of the material flow control in the two directions and forming process to remove this flow defect is proposed. The effectiveness of the proposed methods is examined by comparison experiment and finite element simulation.

  • PDF

Use of Processing Maps to Evaluate the Forming Condition during Ring Rolling (변형공정지도를 활용한 링롤링 공정 조건 평가)

  • Lee, H.J.;Kang, G.P.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.5-11
    • /
    • 2016
  • The control of the roll velocities is essential in maintaining stability during ring rolling, but such control is difficult. The determination of the best roll velocities can be helped with the use of FE simulations and processing maps, which give the useful information such as power dissipation and flow instability for hot metal forming processes. In the current study, the workability of 7050 aluminum alloy is evaluated by using processing map. With the developed information, the stability of the ring rolling condition, called the Constant Growth Velocity Condition (CGVC), is evaluated.

Experimental Study of the Quantitative Characteristics of Fluidic Thrust Vectoring Nozzle for UAV (UAV용 추력편향 노즐의 정량적 특성에 관한 실험적 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.723-730
    • /
    • 2014
  • Experimental study for supersonic co-flowing fluidic thrust vectoring control utilizing the secondary flow is performed. The characteristics of the thrust vectoring of two dimensional supersonic flow (Mach 2.0) are studied by Schlieren flow visualization and highly-accurate multi-component force measurements using the load cells. It is observed that the thrust deflection angle initially decreases and increases again forming a V-shaped variation as the pressure of the secondary flow increases. Characteristics of the performance coefficients of the system are also studied, and the detailed operating conditions for higher performance of the technique are suggested.

The Analysis of Draw-bead Process According to the Effect of the Drawbead Shape by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 드로우비드 형상에 따른 비드공정 해석)

  • 정동원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.275-281
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critial Problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF