• Title/Summary/Keyword: Flow Control Block

Search Result 98, Processing Time 0.029 seconds

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

A study of motion estimation with optical flow (Optical flow를 이용한 motion estimation에 관한 연구)

  • Byun, Cha-Eung;Kim, Jae-Young;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1350-1352
    • /
    • 1996
  • The purpose of image sequence coding is to reduce the spatio-temporal redundancies. For the spatial redundancies, we can use the transform coding such as DCT. In this paper, the optical flow method is applied to solve the problem of temporal redundancies. There are several estimation methods like block matching method and pel-recursive method. Block matching method is easy for a hardware implementation because of the computational simplicity. So, it is now used as the estimation method in MPEG-l, MPEG-2, and H.261. We compared the merits and demerits of the optical flow method and the block matching method in this paper.

  • PDF

Study on the method of Block processing by SFC (SFC에 의한 권역별 처리 방법에 관한 연구)

  • You, Jeong-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.273-275
    • /
    • 2006
  • Ladder Diagram(LD) is the most widely utilized among many sorts of existing programs using for the design of process control system. But it is very difficult to grasp sequential flow of control logic. In this paper, we proposed the method that we can control a lot of blocks. We used PLC in process control system. And, in order to design we used Sequential Function Chart(SFC). In this paper, we proposed the method of block contro. and confirmed feasibility through a simulation.

  • PDF

Flow Control and Heat Transfer Enhancement from a Heated Block by an Inflow Pulsation (I) Flow Field Computation (입구 유동 가진에 의한 사각 발열체 주위의 유동제어 및 열전달촉진 (I) 유동장 수치해석)

  • 리광훈;김서영;성형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.592-598
    • /
    • 2002
  • The characteristics of a pulsating flow field from a heated block representing heat-dissipating electronic component in a channel have been numerically investigated. At the channel inlet a pulsating sinusoidal flow is imposed. The Reynolds number based on the channel height (H) is fixed at Re=500, and the forcing frequency is varied in the range of $0\leqSt\leq2$. Numerical results on the time-dependent flow field are obtained and averaged over a cycle of pulsation. The effect of the important governing parameters such as the Strouhal number is investigated in detail. The results indicate that the recirculating flow behind the block is substantially affected by the pulsation frequency. To characterize the periodic vortex shedding due to the inflow pulsation, numerical flow visualizations are carried out.

Flow Control and Heat Transfer Enhancement from a Heated Block by an Inflow Pulsation (II) Thermal Field Computation (입구 유동 가진에 의한 사각 발열체 주위의 유동제어 및 열전달촉진 (II) 온도장 수치해석)

  • 리광훈;김서영;성형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.599-606
    • /
    • 2002
  • uniform temperature. The surfaces of the block are taken at a constant higher temperature. The channel walls are assumed to be adiabatic. Results on the time-dependent temperature field are obtained and averaged over a cycle of pulsation. The effect of the important governing parameters, such as the Strouhal number on the flow and the heat transfer is investigated in detail. The results indicate that the recirculating flow behind the block are substantially affected by the pulsation frequency. These, in turn, have a strong influence on the thermal transport from the heated element to the pulsating flow. The frequency at which the enhancement is maximum is determined.

The study on design of object perception system by optical flow (Optical flow를 이용한 Object perception system 구성에 대한 연구)

  • 이형국;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.56-59
    • /
    • 1997
  • Vision system is mainly consist of three parts of perception, action. One of these parts, perception system detects visual target in surrounding environment. Block-based motion estimation with compensation is one of the popular approaches without accuracy. The hierarchical method the optical flow with gradient is used to improve optical flow time delay.

  • PDF

NUMERICAL ANALYSIS FOR FLOW CHARACTERISTICS WITH GEOMETRIC SHAPE AND CONTROL CONDITIONS IN SUBSEA BY-PASS VALVE (심해저 바이패스 밸브의 기하학적 형상과 제어조건에 따른 유동특성에 관한 수치해석적 연구)

  • Lee, J.H.;Min, C.H.;Oh, J.W.;Cho, S.;Kim, H.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2016
  • The present study has been carried out to analyze the flow characteristics with geometric shape and control conditions in subsea by-pass valve. The function of by-pass valve is to prevent reverse flow. In this study, the static analysis has been perform for analyzing fluid flow in open state. In order to consider the turbulent effect, the standard ${\kappa}-{\varepsilon}$ model was used. A variety of parametric studies, such as by-pass valve type or size, volume flow rate, leakage hole size, leakage hole position, block type, block shape, were performed. The pressure difference across the valve in the model broadened the flow channel cross-sectional area was greater than the base model for the same operating conditions. As the pipe diameter in the block decreases the pressure difference is greatly increased. The pressure difference according to block shape such as edge type and round was almost negligible. For the same Reynolds number the pressure difference was little changed according to the size of the valve.

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

PREDICTION OF THE AERODYNAMIC CHARACTERISTICS OF AN ORBITAL BLOCK OF A LAUNCH VEHICLE IN THE RAREFIED FLOW REGIME USING DSMC APPROACH (DSMC 해석기법을 이용한 희박유동 환경에서의 발사체 Orbital Block 공력특성 예측)

  • Kim, Young-Hoon;Ok, Ho-Nan;Choi, Young-In;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.79-82
    • /
    • 2007
  • The aerodynamic coefficients of Apollo capsule are calculated using a DSMC solver, SMILE, and the results agree very well with the data predicted by NASA. The aerodynamic characteristics of an orbital block which operates at high altitudes in the free molecule regime are also predicted. For the nominal flow conditions, the predicted aerodynamic force is very small since the dynamic pressure is extremely low. And the additional aerodynamic coefficients for the analysis of the attitude control are presented as the angle of attack and the side slip angle vary from $+45^{\circ}\;to\;-45^{\circ}$ of the nominal angle.

  • PDF

TCP Engine Design for TCP/IP Hardware Accelerator (TCP/IP Hardware Accelerator를 위한 TCP Engine 설계)

  • 이보미;정여진;임혜숙
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5B
    • /
    • pp.465-475
    • /
    • 2004
  • Transport Control Protocol (TCP) has been implemented in software running on CPU in end systems, and the protocol processing has appeared as a new bottleneck due to advanced link technology. TCP processing is a critical issue in Storage Area Network (SAN) such as iSCSL, and the overall performance of the Storage Area Network heavily depends on speed of TCP processing. TCP Engine implemented in hardware reduces the load of CPU in end systems as well as accelerates the protocol processing, and hence high speed data processing is achieved. In this paper, we have proposed a hardware engine for TCP processing. TCP engine consists of three major block, TCP Connection block Rx TCP block and Tx TCP block TCP Connection block is responsible for managing TCP connection states. Rx TCP block is responsible for receive flow which receives packets from network and sends to CPU. Rx TCP performs header and data processing and sends header information to TCP connection block and Tx TCP block It also assembles out-of-ordered data to in-ordered before it transfers data to CPU. Tx TCP block is responsible for transmit flow which transfers data from CPU to network. Tx TCP performs retransmission for reliable data transfer and management of transmit window and sequence number. Various test-cases are used to verify the TCP functions. The TCP Engine is synthesized using 0.18 micron technology and results in 51K gates not including buffers for temporal data storage.