• Title/Summary/Keyword: Flow Boiling Heat Transfer

Search Result 201, Processing Time 0.027 seconds

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1481-1486
    • /
    • 2004
  • This report presents experimental results on the heat transfer coefficients in the boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distribution of a two dimensional dilute spray impinging on hot plate was experimentally investigated. Based on the experimental results, they classified the heat transfer area into the stagnation region and wall-flow region. In the stagnation region, the local heat transfer coefficient relates mainly to the droplet-flow-rate supplied from spray nozzle directly, so the local heat transfer coefficients is good agreement with the predicted values from correlation for spray cooling proposed by former report However, the local heat transfer coefficient in wall-flow region is larger than predicted values, and it is found that the rebounding droplets-flow-rate must be accurately evaluated to predict the local heat transfer coefficient in this region.

  • PDF

Numerical Study on Flow and Heat Transfer Enhancement during Flow Boiling in Parallel Microchannels (병렬 미세관 흐름비등의 유동특성 및 열전달 향상에 대한 수치적 연구)

  • Jeon, Jin-Ho;Lee, Woo-Rim;Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.472-473
    • /
    • 2008
  • Flow boiling in parallel microchannels has received attention as an effective heat sink mechanism for power-densities encountered in microelectronic equipment. the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the dynamics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.

  • PDF

Evaporating Heat Transfer Characteristics of R-l34a in a Horizontal Smooth Channel

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.156-165
    • /
    • 2006
  • Convective boiling heat transfer coefficients were measured in a horizontal minichannel with R-l34a. The test section was made of stainless steel tube with an inner diameter of 3.0 mm and a length of 2m. It was uniformly heated by applying electric current directly to the tube. Local heat transfer coefficients were obtained for heat fluxes from 10 to $40kW/m^2$, mass fluxes from 200 to $600kgT/m^2s$, qualities up to 1.0, and the inlet saturation temperature of $10^{\circ}C$. The experimental results were mapped on Wojtan et $al.'s^(7)$ and Wang et $al.'s^(8)$ flow pattern maps. The nucleate boiling was predominant at low vapor quality whereas the convective boiling was predominant at high vapor quality. Laminar flow appeared in the flow with minichannel. The experimental results were compared with six existing two-phase heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants was developed with mean and average deviations of 10.39% and -3.66%, respectively.

An Experimental Study on Heat Transfer Coefficients just before Critical Heat Flux Conditions in Uniformly Heated Vertical Annulus (균일 가열 수직 환상관에서 임계열유속조건 직전의 열전달계수에 관한 실험적 연구)

  • Chun, Se-Young;Lim, Chang-Ha;Moon, Sang-Ki;Chung, Moon-Ki;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.330-336
    • /
    • 2001
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water flow boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions.

  • PDF

The Characteristics of Convective Heat Transfer in Non Boiling Vertical Downard Flow (비비등 수직 하향 유동의 대류 열전달 특성)

  • Lee, D.S.;Kim, J.G.;Yang, H.J.;Oh, Y.K.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.118-123
    • /
    • 2000
  • This experimental study was conducted to figure out the characteristics of convective heat transfer in non boiling vertical downward flow with polymer additives. This experiment was studied in 26mm diameter, 800mm heating length and $1{\times}10^5W/m^2$ heat flux. The polymer concentration ranged from 0PPM to 500PPM with corresponding from Reynolds number $3.3{\times}10^4$ to $6.8{\times}10^4$ in non boiling vertical downward flow. Experimental results show that the characteristics of convective heat transfer was a strong function of polymer concentration and it has decreased with increasing the polymer concentration in non boiling vertical downward flow.

  • PDF

Study on Characteristics of Flow Boiling Heat Transfer in Multi channels (수평 다채널 관에서의 유동 비등 열전달 특성에 관한 연구)

  • CHOI, Yong-Seok;LIM, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1310-1317
    • /
    • 2015
  • Two-phase flow boiling heat transfer in micro-channels was experimently investigated. The test section consisted of 15 rectangular micro-channels with a depth of 0.45mm, width of 0.20mm. The experiments were performed for heat fluxes ranging from 5.6 to 46.1kW/m2 and mass fluxes from 150 to 450kg/m2s using FC-72 as the working fluid. According to the results, at the low heat flux region, heat transfer coefficient strongly depends on the heat flux, while heat transfer coefficient at the high heat flux region was independent on the heat flux. Four correlations were used to predict the heat transfer coefficient. The measured heat transfer coefficient was compared with four correlations. It was found that Kaew-On and Wongwises's correlation well predicted the measured data, within the MAE of 40.3%.

An Experimental Study on Heat Transfer Characteristics Just Before Critical Heat Flux in Uniformly Heated Vertical Annulus Under a Wide Range of Pressures

  • Chun, Se-Young;Moon, Sang-Ki;Chung, Heung-June;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.269-285
    • /
    • 2002
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water (low boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions. The well-known correlations were compared with the measured heat transfer coefficients. The Shah and Kandlikar correlations gave better prediction than the Chen correlation. However, the modified Chen correlation proposed in the present work showed the best agreement with the present data among correlations examined .

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube (R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향)

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF