• Title/Summary/Keyword: Flotation process

Search Result 190, Processing Time 0.025 seconds

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Substitutability of coagulation process by pre-treatment of coagulation·flotation using natural algae coagulant (천연조류제거제를 활용한 응집·부상 전처리공정의 기존 응집공정 대체 가능성)

  • Jang, Yeo-Ju;Jung, Jin-Hong;Lim, Hyun-Man;Chang, Hyang-Youn;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • In the coagulation/sedimentation (C/S) process of the water treatment process, the inflow of massive algal bloom causes many problems including fouling of filter media. This study was conducted to find out the way to remove the algae's harmful effects by addition of pre-treatment prior to C/S process. Many Jar-tests were conducted such as (1) ACF (Algae Coagulation Flotation) process using natural algae coagulant (Water $Health^{(R)}$), (2) ACF + C/S process and (3) C/S process with a variety of conditions using cultured algae. The average values of turbidity were (1) 0.42 NTU for ACF process, (2) 0.13 NTU for ACF + C/S process and (3) 0.25 NTU for C/S process. It was shown that the treatment efficiency of ACF process could get low turbidity results, and ACF + C/S process could achieve more efficient results than those of C/S process. Any negative effects of ACF process to the efficiency of C/S process were not observed in ACF + C/S process. In order to reduce the unfavorable effects of algae, it was found out that the introduction of ACF process in the forms of (1) ACF or (2) ACF + C/S could be one of the effective and alternative solutions.

Simulation study of DAF flotation basin using CFD (전산유체해석기법을 이용한 용존공기부상공정의 유동해석)

  • Park, Byungsung;Woo, Sungwoo;Park, Sungwon;Min, Jinhee;Lee, Woonyoung;You, Sunam;Jun, Gabjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.261-272
    • /
    • 2013
  • Algae boom (Red tide) in south coastal area of Korea has been appeared several times during a decade. If algae boom appears in the desalination plant, media filter and UF filter are clogged quickly, and the plant should be shutdown. In general, Algae can be removed from water by flotation better than by sedimentation, because of the low density of algal cell. The purpose of this study conducts the CFD simulation of DAF flotation basin to apply the design of the dissolved air flotation with ball filter in the Test Bed for SWRO desalination plant. In this study, Eulerian-Eulerian multiphase model was applied to simulate the behavior of air bubbles and seawater. Density difference model and gravity were used. But de-sludge process and mass transfer between air bubbles and seawater were ignored. Main parameter is hydraulic loading rate which is varied from 20 m/hr to 27.5 m/hr. Geometry of flotation basin were changed to improve the DAF performance. According to the result of this study, the increase of hydraulic loading rate causes that the flow in the separation basin is widely affected and the concentration of air is increased. The flow pattern in the contact zone of flotation basin is greatly affected by the location of nozzle header. When the nozzle header was installed not the bottom of the contact zone but the above, the opportunity of contact between influent and recycle flow was increased.

A Study on the Ozoflotation Process for Drinking Water Treatment (Ozoflotation 공정의 정수처리 적용에 관한 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Lee, Hoon;Byun, Kyu Sik;Kwon, Soon Buhm;Sohn, Byeong Yong;Ahn, Hyo Won;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.528-534
    • /
    • 2005
  • Ozone, a powerful oxidant, is widely used to remove microorganisms, pesticides, taste and odor compounds effectively. Dissolved air flotation (OAF) has been known as an economical process for treating algae and low turbid water quality. An ozoflotation system, combining ozone and OAF processes, has a merit which can operate the ozonation and flotation process simultaneously in a single compartment. This study investigated the application of the ozoflotation process for advanced water treatment by carrying out the pilot-plant experiment. During the test, ozone microbubbles were generated through a OAF pump and many kinds of parameters were evaluated under several conditions, such as raw water flow rate and ozone dose. As a result of the test, the optimum operating conditions of ozoflotation were decided to be 1.2 mg/L ozone dose and about 34 minute Hydraulic retention time (HRT). Finally, it could be demonstrated that the ozoflotation system can effectively improve the drinking water quality.

Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant (파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가)

  • Jang, Yeoju;Jung, Jinhong;Lim, Hyunman;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process (부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가)

  • Yang, Jong-Won;Choi, Yong-Ho;Chae, In-Seok;Kim, Mi-Sug;Jeong, Yong-Hoon;Kim, Tae-Geum;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Effect of Oyster Shell Addition on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (팽화슬러지의 용존공기부상과 침전에 미치는 굴패각 첨가의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.82-88
    • /
    • 2007
  • The objective of this study is to examine the effect of the waste oyster shell powder as the addition agent in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effect of parameters such as dosage and size distribution of oyster shell were examined. The results showed that the optimum dosage of mixed oyster shell(size range : $\sim250{\mu}m$) was 0.8 g/L. The oyster shell addition of 5.0 g/L in sedimentation process was increased thickening concentration of 3.25 times. When 5.0 g/L of oyster shell was added in DAF process, water content of sludge was decreased from 95.5% to 82.7% in dewatering process using Buchner funnel test device. When size of oyster shell was divided four ranges($\sim53{\mu}m$, $53\sim106{\mu}m$, $106\sim150{\mu}m$, $150\sim250{\mu}m$), optimum size range for the flotation and dewatering was $53\sim106{\mu}m$.

Effective Chemical Treatment of Biologically Treated Distillery Wastewater in Industrial Scale (생물학적으로 처리한 주정폐액의 효율적인 화학적 처리방법)

  • Nam, Ki-Du;Chung, In;Hur, Daniel;Park, Wan
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.692-697
    • /
    • 1999
  • For further removal of non-biodegradable CODs and color in biologically treated distillery waster water, we selected a chemical treatment with Fe(III) and cationic polymers and then another chemical treatment with Fenton reagent. We developed Pregenerated Bubble Flotation(PBF) to effectively remove the chemical sludge from each chemical reaction process. The flotation unit was constructed with hydraulic loading rate, 7 ㎥/$m^2$.hr. The CODMn and suspended solids (SS) in biologically treated distillery waste water were reduced by the first PBF from 310-1096 mg/L to 141-303 mg/L and from 160-990 mg/L to 48-385 mg/L, respectively. Again, after the Fenton reaction process, floated SS was skimmed off at the top of the flotation unit and the final effluent was directly discharged without any tap water dilution. The quality of final effluent can be below 40 mg/L-CODMn but IISan Distilery has been maintained effluent quality of 73 mg/L-CODMn and 10-80 mg/L-SS. The chemical cost was saved by more than 30% as compared with that of prior process.

  • PDF

Optimization of the Turbidity Removal Conditions from TiO2 Solution Using a Response Surface Methodology in the Electrocoagulation/Flotation Process (전기응집/부상 공정에서 반응표면분석법을 이용한 TiO2 수용액의 탁도 처리조건 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.491-499
    • /
    • 2009
  • The removal of turbidity from $TiO_2$ wastewater by an electrocoagulation/flotation process was studied in a batch reactor. The response surface methodology (RSM) was applied to evaluate the simple and combined effects of the three main independent parameters, current, NaCl dosage and initial pH of the $TiO_2$ solution on the turbidity removal efficiency, and to optimize the operating conditions of the treatment process. The reaction of electrocoagulation/flotation was modeled by use of the Box-Behnken method, which was used for the fitting of a 2nd order response surface model. The application of RSM yielded the following regression equation, which is an empirical relationship between the turbidity removal efficiency of $TiO_2$ wastewater and test variables in uncoded unit: Turbidity removal (%)=69.76+59.76Current+11.98NaCl+4.67pH+5.00Current${\times}$pH-160.11$Current^2-0.34pH^2$. The optimum current, NaCl dosage and pH of the $TiO_2$ solution to reach maximum removal rates were found to be 0.186 A, 0.161 g/l and 7.599, respectively. This study clearly showed that response surface methodology was one of the most suitable method to optimize the operating conditions for maximizing the turbidity removal. Graphical response surface and contour plots were used to locate the optimum point.