Browse > Article
http://dx.doi.org/10.5668/JEHS.2009.35.6.491

Optimization of the Turbidity Removal Conditions from TiO2 Solution Using a Response Surface Methodology in the Electrocoagulation/Flotation Process  

Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu)
Park, Young-Seek (Department of Health & Environment, Daegu University)
Publication Information
Journal of Environmental Health Sciences / v.35, no.6, 2009 , pp. 491-499 More about this Journal
Abstract
The removal of turbidity from $TiO_2$ wastewater by an electrocoagulation/flotation process was studied in a batch reactor. The response surface methodology (RSM) was applied to evaluate the simple and combined effects of the three main independent parameters, current, NaCl dosage and initial pH of the $TiO_2$ solution on the turbidity removal efficiency, and to optimize the operating conditions of the treatment process. The reaction of electrocoagulation/flotation was modeled by use of the Box-Behnken method, which was used for the fitting of a 2nd order response surface model. The application of RSM yielded the following regression equation, which is an empirical relationship between the turbidity removal efficiency of $TiO_2$ wastewater and test variables in uncoded unit: Turbidity removal (%)=69.76+59.76Current+11.98NaCl+4.67pH+5.00Current${\times}$pH-160.11$Current^2-0.34pH^2$. The optimum current, NaCl dosage and pH of the $TiO_2$ solution to reach maximum removal rates were found to be 0.186 A, 0.161 g/l and 7.599, respectively. This study clearly showed that response surface methodology was one of the most suitable method to optimize the operating conditions for maximizing the turbidity removal. Graphical response surface and contour plots were used to locate the optimum point.
Keywords
electrocoagulation/flotation; response surface methodology (RSM); Box-Behnken method; $TiO_2$; optimization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gao, P., Chen, X., Shen, F., Chen, G. : Removal of Chromium (VI) from wastewater by combined electrocoagulation-electroflotation without a filter. Separation and Purification Technology, 43, 117-123, 2005   DOI   ScienceOn
2 Cho, I. H., Chang, S. W., Lee, S. J. : Optimization and development of prediction model on the removal condition of livestock wastewater using a response surface method in the photo-Fenton oxidation process. Journal of Korean Society of Environmental Engineers, 30(6), 642-652, 2008
3 Mansour, L. B., Ksentini, I., Elleuch, B. : Treatment of wastewaters of paper industry by coagulation-electroflotation. Desalination, 208(1-3), 34-41, 2001   DOI   ScienceOn
4 Balasubramanian, N., Kojima, T., Srinivasakannan, C. : Arsenic removal through electrocoagulation: Kinetic and statistical modeling. Chemical Engineering Journal, 155(1-2), 76-82, 2009   DOI   ScienceOn
5 Golikova, E. V., Rogoza, O. M., Shelkunov, D. M., Chernoberezhskii, Y. A. : Electrosurface properties and aggregation stability of aqueous dispersion of TiO$_{2}$ and ZrO$_{2}$. Colloid Journal, 57(1), 25-29, 1995
6 Cho, I. H., Park, J. H., Kim, Y. G., Lee, H. K. : Optimization of photocatalytic degradation conditions for dying wastewater using response surface method. Journal of Korean Society on Water Quality, 19(3), 257-270, 2003
7 Kim, D. S., Park, Y. S. : Sewage sludge thickening using electroflotation. Journal of the Environmental Science, 16(9), 1085-1090, 2007   과학기술학회마을   DOI   ScienceOn
8 Lim, Y. B., Park, S. H., Ahn, B. J., Kim, Y. I. : Practical design of experiments, Seoul, Free Academy, 1-15, 2008
9 Kim, D. S., Park, Y. S. : Effect of coagulation and homogenization on the dissolved air flotation and sedimentation of bulking sludge. Journal of Environmental Health Sciences, 33(1), 68-74, 2007   과학기술학회마을   DOI
10 Lee, S. H. : Engineering statistics data analysis using Minitab, Seoul, Ire Tech. Inc., 715-732, 2008
11 Lee, S. B. : Design of experiments of focused on exercise using Minitab 15 version, Seoul, Ire Tech. Inc., 233-240, 2008
12 Song, W. Y., Chang, S . W. : The study o f statistical optimization of NDMA treatment using UV-process. Journal of Korean Society on Water Quality, 25(1), 96-101, 2009
13 Burns, S. E., Yiacoumi, S., Tsouris, C. : Microbubble generation for environmental and industrial separation. Separation and Purification Technology, 11, 221-232, 1997   DOI   ScienceOn
14 Shin, M. S., Lee, K. H., Kim, D. J., Han, M. Y. : A study on the removal characteristics of TiO2-containing wastewater by electroflotation. Journal of Korean Society of Environmental Engineers, 24(1), 71-78, 2002
15 Kim, D. J., Lee, K. H., Kwon, A. Y., Han, M. Y. : Optimum operation conditions for TiO2 wastewater treatment by electroflotation. Journal of the Korean Society of Water and Wastewater, 15(1), 34-39, 2001
16 $\"{O}$lmez, T. : The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials, 162(2-3), 1371-1378, 2009   DOI   ScienceOn
17 Mathur, S., Singh, P., Moudgil, B. M. : Advanced in selective flocculation technology for solid-solid separations. International Journal of Mineral Processing, 58, 201-222, 2000   DOI   ScienceOn
18 Hur, J. M., Park, J. A. : Performances of anaerobic sequencing batch reactor for digestion of municipal sludge at the conditions of critical solid-liquid separation. Korea Journal of Environmental Health Society, 28(5), 77-85, 2002   과학기술학회마을   ScienceOn
19 Aleboyeh, A., Daneshvar, N., Kasiri, M. B. : Optimization of C.I. Acid Red 14 azo dye removes by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing, 47, 827-832, 2008   DOI   ScienceOn
20 Wang, J. P., Chen, Y. Z., Ge, W. Y., Yu, H. Q. : Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 204-210, 2007   DOI   ScienceOn