• Title/Summary/Keyword: Floor finishing materials

Search Result 72, Processing Time 0.028 seconds

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

A finishing construction method for concrete floor and slab using the cement based self leveling mortar (시멘트계 SL재를 사용한 콘크리트슬래브 미장공법)

  • 손형호;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.387-392
    • /
    • 1994
  • Recently, as the problems according to lack of skilled labour and superior construction materials were gathering strength, there were required the advent of a special materials in building construction division. As a view of the point, the cement-based Self leveling mortar was developed for improvements of the former problems. The Self leveling mortar has the all kinds of the properties as followed the premixed products in plant, self-smoofhing, non shrinkgae etc, accordingly the finishing of concrete floor don't need skilled labour. The purpose of this study is to establish the introduction of a finishing construction method for concrete floor and slab using the cement-based self leveling mortar. Presented is a study on the basic properties of fresh and hardened self leveling mortar. To this end, an actual floor's finishing construction using the cement-based self leveling mortar was conducted in approximately 1,800㎡ floor as to compare the flatness and levelness after finighing.

  • PDF

Reduction of Floor Impact Noise and Impact Force for PVC Floor Covering and Floor Mat (PVC 바닥 마감재와 바닥 매트의 바닥충격음 및 충격력 저감)

  • Mun, Dae-Ho;Song, Guk-Gon;Lee, Cheol-Seung;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.501-508
    • /
    • 2014
  • Floor finishing materials such as floor coverings and floor mats can reduce floor impact noise easily. When an impact was applied to the floor, its finishing material is deformed and the impact force that was applied to the concrete slab is changed. The softer finishing materials were, the more impact force decreased. An experimental study was performed using 14 PVC floor coverings and 16 floor mats to capture the characteristics of impact force and impact noise in the residential buildings. The test results show that the impact force spectrum and the floor impact noise spectrum have a linear relationship in the case of a bare concrete slab, and the characteristics of impact force reduction are the same as those of floor impact noise reduction.

Usability and Strength Characteristics of Loess(Hwangtoh) Finishing Material by Different Ratios of Ingredients (황토 마감재의 배합비에 따른 압축강도 특성과 사용성 평가)

  • Lee, Shin-Ho;Yoon, Seong-Soo;Song, Kyo;Song, Chang-Seob;Han, Chung-Su
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.3 s.28
    • /
    • pp.53-57
    • /
    • 2005
  • Up to recently building are constructed focusing on the convenience of residential condition. However, environmental-friendly materials is required for construction as people are spending more time inside buildings and causes of many problems like sick-building syndrome are known due to the noxious gases and polluted air originated from construction materials. Although loess(hwangtoh) is an environmental-friendly material, it has limitations in compressive strength far a construction material. The purpose of this study is to suggest the optimal ratio of loess(hwangtoh) mortar by tests of compressive strength comparing with standard strength of floor finishing mortar and evaluate the usability of loess(hwangtoh) mortar for floor finishing material through an impact test, a cracking test and a abrasion test. Based on the results of this study, 86% of loess(hwangtoh) and 14% of inorganic binder is suggested for the optimal mixture ratio of loess(hwangtoh) mortar. Moreover, the characteristics of loess(hwangtoh) is suitable for floor finishing material in impact, crack, abrasion.

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

A Study on the Application of Finishing Materials According to the Locational Function of the Chapel in Church Space (교회공간 예배실의 위치적 기능에 따른 마감재 적용 연구)

  • Yeo, Mi;Lee, Chang No
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.1
    • /
    • pp.178-188
    • /
    • 2015
  • This study has the main objective of being of help as a reference data for the application of the finishing materials when designing the interior of the chapel of the church space through analysis of the finishing materials against the chapels of church space which has complex function. As precedent studies for this, the composition of the function and concept of the church space was surveyed and the complex function of the church space was surveyed. The theoretical surveyed was performed according to the casual composition, behavior of the community and role and location of the duties of the church members. The case objects were 10 chapels constructed by 5 professional interior design companies. The content of the analysis was the finishing materials in the chapels and their application characteristics. The detailed considerations to be referred to when designing the interior of the chapels of church space in the future were proposed. The analysis result of the application of the finishing materials according to the locational function of the chapels of church space can be explained as follows. First, the platform area was the characteristic of applying finishing materials which induce visual immersion. As for the floor materials in the platform, in order to minimize the floor sound and vibration phenomenon occurring during movements, noise insulation and dust protection rubber sheet was place and on top of it the floor or the carpet was placed. Second, the Choir area had the difficult problem of having to consider the appropriate sound absorption occurring due to the proliferation of sound and performance of classical instruments at the same time. However, in the case, this problem was solved through the sculptures of convex shape. Third, since the scheelite is a space where many people move around, the finishing material which absorbs sound was mainly used. Fourth, the entrance area was composed of thick wall materials compared to other walls, and the sound absorption character was most significantly considered when applying the finishing material. Fifth, the broadcasting room was composed either in independent type or an open type and performed its function and the main finishing materials was transparent glass which was highest use frequency.

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

A Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 연구)

  • Ki, No-Gab;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1038-1042
    • /
    • 2007
  • The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames + Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

  • PDF