• Title/Summary/Keyword: Floor concrete Thickness

Search Result 54, Processing Time 0.026 seconds

The Adequate Slab Thickness Satisfied with the Vertical Floor Vibration Criteria for Several Concrete Compressive Strength (콘크리트 강도에 따른 바닥판 수직진동에 대한 적정 두께 제안)

  • 남상욱;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.659-662
    • /
    • 2003
  • Recently, the floor thickness in residence may not be satisfied with the floor vibration criteria although the thickness is evaluated by the serviceability requirements in current design provisions. Thus it is necessary to develop the procedure to determine slab thickness satisfied with the floor vibration criteria. In this study, We proposed the methods to determine the slab thickness satisfied with the vertical floor vibration criteria for several concrete compressive strength of flat plate floor systems. For this purpose Monte Carlo simulation procedure was adopted and both randomness inherent in young modulus of concrete and heel drop intensity were accounted.

  • PDF

Proposing the Slab Thickness that Satisfies the Vertical Floor Vibration Criteria for Several Sizes of Flat Plate Floor System (수직진동 사용성을 고려한 플렛플레이트 두께 제안)

  • 이민정;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.600-603
    • /
    • 2003
  • The floor thickness in residential buildings may not satisfy the floor vibration criteria even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. In this study provide the methods to determine the slab thickness that satisfies the vertical floor vibration criteria for several sizes of flat plate floor system. Randomness inherent in young modulus of concrete and heel drop intensity was accounted. For this purpose Monte Carlo simulation procedure was adopted.

  • PDF

Minimum Thickness of Flat Plate Slab Satisfying Floor Vibration Criteria (수직진동 사용성을 고려한 플랫 플레이트 슬래브의 최소두께 제안)

  • Lee, Min-Jung;Kim, Dong-Hyun;Han, Sang-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.574-581
    • /
    • 2006
  • Flat plate slab systems are more economical rather than reinforced concrete frame systems because flat plate slab system reduces story height. Furthermore flat plate systems are more popularly needed in construction practice due to flexibility of plan. Korean Concrete Provisions 2003 provide the minimum thickness of the slab that satisfies serviceability requirement to the static displacement. However, floor thickness in residence buildings may not satisfy the floor vibration criteria although the thickness satisfies the serviceability requirements in current design provisions. This study estimates the dynamic properties of floor vibration for existing flat plate slabs, and proposes the slab thickness satisfying the floor vibration criteria. The dynamic response analysis using finite element method and reliability analysis are carried out for this Purpose.

A Study on the Sound Insulation Performance Elevation of Floor Structure that use Rubber chip in Apartment House (고무칩을 이용한 공동주택 바닥구조의 차음성능 향상에 관한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.237-332
    • /
    • 2002
  • We constructed ceiling structure and floor structure for elevation of sound insulation performance of concrete slab of apartment house. And, we wished to measure heavy floor impact sound level and light floor impact sound level of these structure. As the result, light floor impact sound level interception performance of concrete slab was measured by thing that construction work of gypsum baud is important. Heavy floor impact sound level interception performance was measured by thing that it is effective that construct to thickness about 30 millimeters on concrete Slav. It was measured effectively that heavy floor impact sound level interception performance constructs rubber chip to thickness about 30 millimeters on concrete Slav.

  • PDF

A Study on the Development of High Performance Floor Impact Noise Insulation System (고성능 바닥충격음 차단구조 개발에 관한 연구)

  • Jang, Jae-Hee
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • For the many years the children's running noise has caused perpetual frictions between neighbors in apartment houses. For this reason the government established a regulation to reduce the floor impact noise, as a result almost all apartment houses have been enforced to use the floor structure with 210mm thickness concrete slab and 120mm thickness of floor heating system since July 2005. If do not want to apply this kind of system, a system which obtain the certification from the institution appointed by government must be applied. In this reason a lot of construction material companies and construction companies have been trying to develop the system with 180mm thickness concrete slab for the purpose of reducing the cost. To develop the optimized floor system, actual size test building were constructed and the materials related with reducing floor impact noise were composited and tested in the test building. Through this procedure the most effective system was found.

Probability Based Determination of Slab Thickness Satisfying Floor Vibration Criteria (수직진동 사용성 기준을 고려한 바닥판 두께 제안)

  • Lee Min-Jung;Nam Sang-Wook;Han Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.687-694
    • /
    • 2005
  • In current design practice, the thickness of the floor slab has been determined to satisfy requirement for deflection control. However, previous study shows that the floor thicknesses in residential buildings may not satisfy the floor vibration criteria, even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. This study attempts to propose slab thickness for flat plate slab systems that satisfies floor vibration criteria against occupant induced floor vibration(heel drop load). Two boundary conditions(simple and fixed support), three square flat plates(4, 6, 8m), and five concrete strength($18\~30$ MPa) are considered. Since there are large uncertainties in loading and material properties, probabilistic approach is adopted using Monte-Carlo simulation procedures.

Proposing the Thickness of 2-Way Slab Satisfying Floor Vibration Criteria for Several Boundary Condition (수직진동에 대한 사용성을 고려한 경계조건에 따른 2방향 슬래브 최소두께 제안)

  • Kim, Dong-Hyun;Lee, Min-Jung;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.199-202
    • /
    • 2005
  • KCI 2003 provides minimum thickness of slab that satisfies serviceability to static displacement. Previous study (Han, et al. 2003) showed the several slabs that designed according to minimum thickness criteria had floor vibration problem. In this study, evaluate the floor vibration serviceability of KCI 2003 minimum thickness requirements for 2-way flat plate and propose the minimum thicknesses of 2-way slabs that satisfy floor vibration criteria according to several boundary condition. For this purpose, one degree of freedom model is used and Monte Carlo simulation is performed.

  • PDF

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

Development of Polymer Mortar Floor Members for Swine Housing Reinforced by FRP (FRP 보강 폴리머 모르터를 이용한 돈사 바닥재 개발)

  • 유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • The objective of this study is to develop a polymer mortar floor members for wine housing with high strength and durability using unsaturated polyester resin to complement defects of conventional cement concrete. Physical and mechanical properties of the polymer mortar floor members for swine housing are also investigated. Specimens with different panel thickness and FRP reinforcement are prepared, tested, and analyzed with respect to structural behaviors. Cracking moment is mostly affected by the thickness and reinforced FRP. Data of the study can be applied to the designing and planning of floor members for swine housing.

  • PDF

Insulation Saving Effect for Korean Apartment House Using Cross-Laminated Timber (CLT)

  • Pang, Sung-Jun;Lee, Bumjin;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.846-856
    • /
    • 2017
  • The aim of this study was to develop the details of cross-laminated timber (CLT) envelops for satisfying the design standard for energy saving (DSEA) and passive standard in South Korea. When the same thickness of 180 mm concrete or CLT was used and the same materials for other layers were used for the roof, wall, and interlayer floor, the required insulation thickness for the different building envelopes in central, southern, and Jeju island was evaluated. As a result, compared to the concrete envelop, about 43 mm of insulation thickness was reduced for wall and roof with the CLT envelope. When the CLT envelopes were modified to protect the CLT from moisture based on FPInnovations (2011), the insulation thickness was further reduced by 12 mm. When the modified CLT building envelops satisfied with a passive standard are used for 10-story building, the required insulation was decreased by $40.89m^3$ for a floor ($105.27m^2{\times}2.3m$ in height) compared to concrete building. As the number of floors increases, about 3.58 m3 of insulation per floor was additionally saved.