• Title/Summary/Keyword: Floor Impact noise

Search Result 334, Processing Time 0.021 seconds

A Study on the Analysis of Propagation Characteristics for Floor Impact Noise in Apartment Houses (공동주택의 바닥충격음 전달 특성 분석에 관한 연구)

  • Seok Ho-Tae;Cho Kyung-Jae;Cha Min-Chul;Jae Sung-Ho
    • Journal of the Korean housing association
    • /
    • v.16 no.5
    • /
    • pp.91-98
    • /
    • 2005
  • The purpose of this study is to analysis of propagation characteristics for floor impact noise in attendance upon investigating standard of insulation performance, measurement and evaluation, understanding characteristics of a measuring factor for floor impact noise in apartment houses. Four cases which was before occupied apartment in Daegu was selected for experiment. Floor impact noise of measurement and evaluation method which are specified in the Korea Standard 2810-1, 2810-2, 2863-1 and 2863-2 was selected for this study. As the result of this study, 1) Especially, there is not a difference for apartment size, but the apartment of 40py type is lower than 30py's about $1\~2\;dB$ for light-weighted and heavy weighted impact sound. 2) The floor impact sound insulation performance is similar about measurement location of the same floor structure. 3) The floor impact sound insulation performance is not a difference about the slab area.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

A Study on the Development of High Performance Floor Impact Noise Insulation System (고성능 바닥충격음 차단구조 개발에 관한 연구)

  • Jang, Jae-Hee
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • For the many years the children's running noise has caused perpetual frictions between neighbors in apartment houses. For this reason the government established a regulation to reduce the floor impact noise, as a result almost all apartment houses have been enforced to use the floor structure with 210mm thickness concrete slab and 120mm thickness of floor heating system since July 2005. If do not want to apply this kind of system, a system which obtain the certification from the institution appointed by government must be applied. In this reason a lot of construction material companies and construction companies have been trying to develop the system with 180mm thickness concrete slab for the purpose of reducing the cost. To develop the optimized floor system, actual size test building were constructed and the materials related with reducing floor impact noise were composited and tested in the test building. Through this procedure the most effective system was found.

Evaluation of Floor Impact Sound by Floor Coverings in Standard Test Building (표준시험동에서 바닥마감재에 따른 바닥충격음 특성평가)

  • Kim, Hak-Cheon;Kim, Yong-Gil;Kim, Sang-Chul;Lee, Hyun-Lyul;Cho, Hyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.439-440
    • /
    • 2008
  • Five floor coverings were tested with three different types of floor structures in the standard test building in order to evaluate the effectiveness of the floor impact sound reduction. The level of floor impact sound reduction is influenced by not only the types of floor coverings but interrelationship between the floor coverings and floor structures. From the tests, it was found that floor coverings were effective in reducing the floor impact sound using the light impact source. In addition, proper mixtures of the floor structure and the floor covering have shown effectiveness to a certain extent in reducing the floor impact sound using the heavy impact source.

  • PDF

Reduction of noise and vibration of cabin by using the floating floor (뜬바닥 구조를 이용한 격실의 소음 및 진동저감)

  • 김현실;김봉기;차선일;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.300-303
    • /
    • 2004
  • In this paper, floor impact noise reduction in a cruise ship cabin by using floating floor is studied. A mock-up is built by using 61 steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7 It is shown that effect of VL(Visco-elastic Layer) is negligible when it is used between deck and mineral wool, since most vibration absorption occurs in the wool. In addition, direction of the mineral wool fiber affects impact noise significantly.

  • PDF

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

Evaluation of heavy-weight impact sounds generated by impact ball through classification (주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가)

  • Kim, Jae-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF

A Study on the Reduction Performance of Floor Impact Sound in Apartment Building (공동주택의 바닥충격음 저감성능에 관한 연구)

  • Lee, Jong-Kyoon
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.27-34
    • /
    • 2003
  • As a result of supply-oriented housing policy of Korea since the 1960s, the number of apartment housing units has increased up to six million as of the end of 2001 that is 55% of total housing units. Although the needs of placid living environment increases according to the enhancement of residents' living standard, most of construction firms as apartment suppliers plan and design apartment buildings to maximize the profit and give rise the residents' petitions and troubles about floor impact noise. In consequence, the floor impact noise becomes one of principal problems of living environment, and the government placed the obligation of installing the noise isolation materials between upper and lower floors in 2001 and controlling the floor impact noise lower than 60dB from the middle of 2004. In other to provide the fundamental research data to enhance the reduction performance of floor impact sound, in this paper, the factors that influence on the floor impact noise are derived from the survey of many research papers and the performance of various materials used as noise reduction objects are compared and surveyed with the factors in the experiments in field and laboratory.

Investigation of the level difference of floor impact noises through the shape variation of EVA resilient materials with composite floor structure (EVA 완충재의 형상변환을 통한 복합구조의 바닥충격음 변이 조사)

  • Jakin Lee;Seung-Min Lee;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2024
  • The present study aims to investigate the level difference of floor impact noises of composite floor structure using EVA resilient materials. In order to this, four different types of resilient materials were designed combining PET, PP sheet and EVA mount including Flat type, Deck type, Cavity type and Mount type. Totally 9 different samples were made for acoustic measurements which were carried out twice with bang-machine and impact ball as the heavy-weight floor impact noise sources. All the floor impact noise measurements were undertaken at the authentication institution. As a result, concerning Flat and Cavity types, it was found that 2 dB ~ 5 dB of heavy-weight floor impact noise was reduced supplementally when PET was added, while floor impact noise larger than 50 dB was acquired when single resilient material was used. Especially, most high performance was obtained for Mount type with 1st grade of light-weight floor impact noise and 2nd grade of heavy-weight floor impact noise. This is because of material property with low dense PET sound absorption materials which fill all around EVA mounts. Also, it was considered that this results are due to the sound impact absorption by the both EVA mounts and the air cavity between EVA mount and PP sheet. Also, it was found that at least 36 EVA mounts per 1m2 area of resilient panel make more noise reduction of heavy-weight floor impact noises.

Evaluating the Vibrational Characteristics of Floor Impact Noise in Different Structural Elements of an Apartment House (바닥충격에 의한 공동주택의 바닥, 벽, 천장의 진동 및 소음방사특성 연구)

  • Lee, Byung-Kwon;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.480-485
    • /
    • 2002
  • The overall noise reduction was compared in regard to the vibrational characteristics of floor impact noise in a multi story residential building which has several noise reduction treatments. The vibration through its structural elements such as wall, floor and ceiling and sound emitting were investigated for each insulation treatment. It was found that, in case of heavy-weight impact noise, the vibration energy is emitted mostly from ceiling, but for the light-weight impact noise, most of the energy comes through ceiling and walls. That is, the vibration of a ceiling is the main factor that determines the frequency characteristics of the transmitting noise to lower floors.

  • PDF