• Title/Summary/Keyword: Floor Heating System

Search Result 278, Processing Time 0.021 seconds

A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel (난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구)

  • Choi, Jeong-Min;Lee, Kyu-Nam;Ryu, Seong-Ryong;Kim, Yong-Yee;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

Simulation Study for Control Strategies of Indoor Air Temperature in Floor Radiant Heating System (바닥 복사난방 시스템의 실내온도 제어방안에 관한 시뮬레이션 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • In this study, the control strategies of indoor air temperature in floor radiant heating system were researched by computer simulation. The temperature difference based time control method using the difference of indoor set temperature and indoor temperature is compared with the existing On-Off control one for heating control performances. As a result, the temperature difference based time control method shows better thermal environmental characteristics in case of selected operational conditions in comparison with existing control one.

Evaluation of Floor Heating Performance and Design Criteria for Operating an Outdoor Swimming Pool During Winter : A Case Study (동절기 옥외 수영장 시설의 운영을 위한 바닥난방 성능평가 및 설계기준에 관한 사례연구)

  • Cho, Jinkyun;Woo, Kyunghun;Kim, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.289-296
    • /
    • 2017
  • This study aimed to analyze the deck floor heating system of an outdoor swimming pool in terms of the thermal capacity/output and the surface temperature distribution based on the outdoor temperature, to design for anti-freezing during winter. Through the transient heat transfer simulation with PHYSIBEL and theoretical equations, the surface temperature distribution of the floor heating system at two outdoor conditions in Jeju, were calculated and evaluated. The results indicate that the specific thermal output required for maintaining $4^{\circ}C$ surface temperature at the design outdoor temperature of $0.1^{\circ}C$, was about $90W/m^2$. This performance analysis can be applied for future design criteria, including optimizations of system capacity and size.

Experimental Study on the Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 실내 열환경 특성에 대한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the effects of various operational conditions for floor radiant heating system were researched by experiments. Hot water supply set temperature, indoor air set temperature and supply water flowrate were considered as operational conditions. The control method for this system is On-Off control of automatic thermostatic valve. The purpose of this study is to evaluate indoor thermal control characteristics and energy performance, respectively. As a result, if lower supply water temperature is applied, the supply and return temperature difference is reduced and energy consumption of heat supply is also reduced.

A Study of the Ondol (Gudul, Floor Heating System) and Kitchen Space in the Traditional Houses on Jeju Island, Korea

  • Kim, Bong-Ae;Lee, Jeong-Lim
    • International Journal of Human Ecology
    • /
    • v.4 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Jeju-do is a volcanic island located off the shore of the Korean peninsula facing the Pacific Ocean. The traditional housing styles of the Jeju Province, therefore, reflect the impact of these natural backgrounds and reveal different housing styles that are distinctive from those of mainland Korea. The purpose of this research is to analyze the peculiarities of the Ondol (floor heating system) and the kitchen space of traditional housing of Jeju Island in terms of lifestyles. This study shall employ two research methods: a literature review and field survey methods. The literature review shall focus on the observations of characteristics noted in previous studies of Jeju's private houses. The field survey shall employ field survey and interview methods originating from the ethnography of the culturological-anthropologist approach. (1) The Jeju-do Ondol system is a “Weibang-eudul” system which means one Gudul per fire hole. (2) The definition of terms for Gulmook show variations depending on the various regions on Jeiu-do. (3) Major facilities in Jeongji include Gulmook, Sotduck, and Busup. Gulmook is a heating facility and Sotduck refers to a cooking facility; Busup refers to a combination of heating, cooking, and illuminating facilities.

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

Steady and Transient Solution of heat Conduction from hurried Pipes of panel heating Slab (상-파넬 히-팅의 해석법)

  • Lee Kun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 1974
  • Floor panel heating system is popular in Korea as dwelling house heating system. There are two methods for keeping floor surface warm. One method is delivering warm air under the floor such as Roman Hypocaust and Korean traditional Ondol. The other method is imbedding hot water pipes into the concrete floor slab. This paper gives basic equations for steady and transient solutions of heat conduction from hurried pipes. For steady-state solution, fin Efficiency Method and Sink and Source Method were introduced. Sink and Source Method is applied to transient state and basic solution is given in the form of Exponential Integral Function. Numerical solutions can be solved easily by digital computer from these equations.

  • PDF

A Computer Code for an Optimum Design of Solar Space and Domestic Hot Water Heating System (태양열주택 및 가정용 태양 온수시스템의 설계용 전산코드)

  • Im, D.J.;Chun, M.H.;Yoon, S.B.
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 1984
  • A computer code for an optimum design of solar space and domestic hot water heating system has been developed. The f-chart method developed by S.A. Klein et al. has been incorporated in the present computer code. The main conclusions obtained from the present work may be summarized as follows: (1) In Seoul area, about 46% of the total heating load can be obtained from the solar collectors whose total surface area is about one-third of the total heating floor area. (2) In Pusan area, total area of solar collectors should be about half of the total heating floor area in order to obtain an equivalent solar fraction of Seoul. (3) In cheju area, on the other hand, only about 42% of the total heating floor area of solar collectors is needed to get the same solar fraction as in Seoul and Pusan. (4) In order to get the first 50% solar fraction, only about 10-14 collectors ($4'{\times}8'$ collectors) are required, whereas about 48 collectors are needed to obtain the solar fraction of 100%. That is, roughly 3.5-4.5 times greater number of collectors are required to increase the solar fraction from 50% to 100%. Therefore, it can be concluded that it is relatively inefficient and less economical to build a solar system whose solar fraction exceeds more than 50%.

  • PDF

Simulation and Experimental Study for Energy Flow Dynamics of Floor Radiant Heating System (바닥복사 난방시스템의 에너지 유동특성에 관한 시뮬레이션 및 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.927-932
    • /
    • 2006
  • A simulation and experimental study for energy flow dynamics of floor radiant heating system were performed. The study was done under both environmental chamber and a house with several rooms. The unsteady energy analysis method using equivalent R-C circuit and radiation heat transfer analysis of enclosure analysis method with simple structured rooms were used for computer simulation. Also, first order dynamics with time delay in analyzing the return water was considered. The results of temperature changes of the simulation study are good fit with the ones of experimental one.

  • PDF

An analysis of the Design heating load calculation in multi-family houses (공동주택 최대난방부하 계산법의 분석)

  • 조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.

  • PDF