• 제목/요약/키워드: Flood monitoring

검색결과 222건 처리시간 0.029초

ODA사업을 통한 미계측 중소하천 유역 홍수예경보시스템 구축 (Establishment of flood forecasting and warning system in the un-gauged small and medium watershed through ODA)

  • 고덕구;이치헌;전제복;고석현
    • 한국수자원학회논문집
    • /
    • 제54권6호
    • /
    • pp.381-393
    • /
    • 2021
  • 국립재난안전연구원의 재난안전 신기술 공적개발원조(ODA) 사업의 일환으로 2019년 라오스 볼리캄싸이주 남싼강유역의 보리칸을 대상으로 홍수예경보시스템을 구축하였다. 미계측 중소하천유역인 대상 지역에 강우량와 유출량의 실시간 관측을 위한 관측소 및 경보국을 설치하였으며, 실시간 자료 관리와 홍수예경보 기능 등을 수행하는 소프트웨어도 개발되었다. 홍수경보 기준 설정 및 홍수예측을 위한 nomograph 개발을 위해 대상 지역의 30년 치 연도별 최대 일강우량자료와 하천측량성과를 바탕으로 수리·수문분석을 수행하였다. 본 논문은 시스템 구축 과정과 방법론을 소개하고, 시스템 설치 후 2020년 실시간 관측 수집된 자료들을 바탕으로 수행한 시스템의 적용성 검토 결과를 제시하였다.

무선센서 네트워크에 의한 통신구 모니터링 시스템 개발 (Cable tunnel monitoring system by wireless sensor network)

  • 김형우
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.176-180
    • /
    • 2007
  • In this study, we deployed the cable tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway can be applied to cable tunnel monitoring system. Sensors considered herein are flame detection sensor, flood detection sensor, intruder detection sensor, and temperature sensor, etc. It is also found that the wireless sensor network can deliver sensing data reliably by wireless sensing technology. The gateway system that can transmit sensed data to server by CDMA is developed. Monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. The system provides an alternative to inspect and monitor the tunnel efficiently where the conventional wired system is infeasible.

  • PDF

도시지역의 침수저감을 위한 내외수 연계 운영 기법 개발: 목감천 유역을 중심으로 (Combined Inland-River Operation Technique for Reducing Inundation in Urban Area: The Case of Mokgam Drainage Watershed)

  • 권순호;정현우;황윤권;이의훈;김중훈
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.257-266
    • /
    • 2021
  • 최근 전 세계적으로 기후변화로 인해 설계빈도를 초과하는 강우가 발생함에 따라 도시 지역의 침수피해가 종종 발생한다. 도시 침수방어 대책으로는 구조적 대책과 비구조적 대책이 있다. 본 연구에서는 비구조적 대책 중에서 내배수 시스템의 운영에 초점을 두었다. 제안 방법인 내외수 연계 운영 방법은 상류 지점에 모니터링 지점을 선정하여 빗물펌프장에 유입되는 유입량을 예측하고, 이를 바탕으로 펌프를 운영하는 방법이다. 본 연구에서는 내외수 연계 운영 기술을 목감천 유역에 적용하였으며, 서울특별시에 큰 침수피해가 발생했던 기왕 강우인 2010년, 2011년 사상을 바탕으로 내외수 연계 운영 방법을 검증하였다. 2010년, 2011년 강우 사상을 적용 결과, 기존 운영 방법대비 침수 저감 효과는 각각 34.9 %, 54.4 % 만큼 감소한 것으로 확인되었다. 즉, 본 연구에서 제안한 내외수 연계 운영 방법은 유수지의 추가 저류공간을 확보함으로써 도시 유역 내에서 침수피해를 최소화했음을 확인하였다. 또한, 집중호우가 많이 발생하는 도시지역에서 침수를 예방하고, 시민의 생명과 재산을 지킬 수 있을 것으로 기대한다.

IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현 (Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring)

  • 박지훈;강문성;송정헌;전상민
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.

철도교량 홍수위감시 및 세굴검지 시스템 적용성 고찰 (A study on the applicability of system for monitoring the flood level and the scour at railroad bridge)

  • 박영곤;이진욱;윤희택;김선종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2005
  • To monitor the flood level under heavy rainfall and the scour at railroad bridge, the system, which can effectively collect, store and transmit the data, is developed and applied to the field. The results in this study are as follows. 1) Monitoring for water level and scour depth is well done in view of the recording velocity and the accuracy of data which are measured. 2) This system is based on the web, internet and it is able to collect the realtime data and to analyze the risk. 3) When water level excesses the limit of danger level of a river on which railroad bridge is located, or when scour depth and angle of inclination of pier is increased, the scenario for early warning signal which sends to managers at central traffic control and drivers of trains is automatically made. It is judged that this system secures the safety of railroad and protects lives of train passengers as the warning signal sends to running train in advance at risky situation of railroad bridge under heavy rainfall.

  • PDF

Water level fluctuations of the Tonle Sap derived from ALOS PALSAR

  • Choi, Jung-Hyun;Trung, Nguyen Van;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.188-191
    • /
    • 2008
  • The Tonle Sap, Cambodia, is a huge lake and periodically flooded due to monsoon climate. The incoming water causes intensive flooding that expands the lake over vast floodplain and wetland consisting mainly of forests and shrubs. Monitoring the water-level change over the floodplain is essential for flood prediction and water resource management. A main objective of this study is flood monitoring over Tonle Sap area using ALOS PALSAR. To study double-bounce effects in the lake, backscattering effect using ALOS PALSAR dual-polarization (HH, HV) data was examined. InSAR technique was applied for detection of water-level change. HH-polarization interferometric pairs between wet and dry seasons were best to measure water level change around northwestern parts of Tonle Sap. The seasonal pattern of water-level variations in Tonle Sap studied by InSAR method is similar to the past and altimeter data. However, water level variation measured by SAR was much smaller than that by altimeter because the DInSAR measurement only represents water level change at a given region of floodplain while altimeter provides water level variation at the central parts of the lake.

  • PDF

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

제방형상과 홍수파형에 의한 제방의 파이핑 안정성 평가 (Levee Stability Assessment Depending on Levee Shape and Flood Wave)

  • 강태운;안현욱;이광만;정관수
    • 한국수자원학회논문집
    • /
    • 제47권4호
    • /
    • pp.307-319
    • /
    • 2014
  • 최근 지구온난화 및 기후변화에 의한 재난이 빈발하고 있어 미국이나 네덜란드 같은 제방 선진국에서는 특수한 경우 적게는 500년, 크게는 10,000년 빈도의 홍수위까지도 고려하는 극단적인 수준의 제방설계기준을 적용하고 있다. 우리나라도 지난 몇 년간 국가하천을 중심으로 대하천 정비사업이 추진되었다. 주로 하천준설과 제방증축 및 신축 등으로 진행된 사업에 의해 하천환경이 광범위하게 변화되었으나 제방의 안전과 관련된 하천환경 변화에 대응하는 구체적인 대응방안을 제시하지는 못하고 있는 실정이다. 따라서 본 연구에서는 제방침투감지시스템 Testbed가 구축되어 있는 낙동강 회천의 율지제를 대상으로 제방 안전성을 평가하였다. 평가방법은 간극수압 계측자료를 이용하여 2차원 지하수 침투모형인 SEEP/W를 이용하여 제방의 파이핑 현상을 분석하였으며, 제방의 형상과 홍수파형에 따른 침투현상을 모의하여 제방안정성을 평가하였다.

Half-hourly Rainfall Monitoring over the Indochina Area from MTSAT Infrared Measurements: Development of Rain Estimation Algorithm using an Artificial Neural Network

  • Thu, Nguyen Vinh;Sohn, Byung-Ju
    • 한국지구과학회지
    • /
    • 제31권5호
    • /
    • pp.465-474
    • /
    • 2010
  • Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.