• 제목/요약/키워드: Flood management

Search Result 803, Processing Time 0.031 seconds

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section (자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석)

  • Ryu, Jiwon;Ji, Un;Kim, Sanghyeok;Jang, Eun-kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.735-747
    • /
    • 2023
  • In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.

The construction of Flood Disaster Management System by Using Mobile GIS (Mobile GIS를 이용한 홍수관리시스템 구축)

  • Jang, Kwang-Jin;Kim, Sung-Bum;Seo, Young-Min;Jee, Hong-Kee
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.616-619
    • /
    • 2007
  • Recently, flood damage has been increased annually by severe rain storm and Typhoon. In this case, it needs to the effective flood management using not only hydrologic data but also numerical map, DEM(Digital Elevation Model), satellite image and so on. At this point in time, therefore, applying mobile GIS technology is expected to increase efficiency about the management of hydraulic structures and can promote LBS(Location Based Service) service for residents. In this study, the flood management technology using mobile GIS is suggested by standing on the basis of a super-highway information network.

  • PDF

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

Integrated Flood Risk Management through Modelling of Nature Based Solutions

  • Bastola, Shiksha;Kareem, Kola Yusuff;Park, Kiddo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.160-160
    • /
    • 2022
  • Floods are the most common natural disasters and are annually causing severe destructions worldwide. Human activities, along with expected increased extreme precipitation patterns as a result of climate change enhance the future potential of floods. There are proven evidence that infrastructure based responses to flood disaster is no longer achieving optimum mitigation and have created a false sense of security. Nature-based solutions(NBS) is a widely accepted sustainable and efficient approach for disaster risk reduction and involves the protection, restoration, or management of natural and semi-natural ecosystems to tackle the climate and natural crisis. Adoption of NBS in decision-making, especially in developing nations is limited due to a lack of sufficient scenario-based studies, research, and technical knowledge. This study explores the knowledge gap and challenges on NBS adoption with case study of developing nation, specially for flood management, by the study of multiple scenario analysis in the context of climate, land-use change, and policies. Identification and quantification of the strength of natural ecosystems for flood resilience and water management can help to prioritize NBS in policymaking leading to sustainable measures for integrated flood management.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

Techniques of flood damage investigation and flood losses data management (홍수재해조사 및 재해자료관리 기법)

  • 김양수
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.36-51
    • /
    • 2000
  • Almost every year, Korean suffered from the repetitive natural disasters such as typhoons and floods. During last 10 years, Korea experienced annual average of $50 million property damages caused by inundation. To estabilish the flood disaster counter plan, knowledge for flood damage causes based on the field investigations of inundated area is required. The field investigations is focused on technique to document and analyze the meteorological conditions leading to torrential rains, the causes and patterns of flooding, the performance of flood control structures in affected areas, the extent damages and the effectiveness of local emergency response and recovery actions. We did comparative analysis of field investigation techniques. As a major goal of flood hazard map design, one of non structural disaster countermeasures, it was expected to reduce flood damage losses by requiring local governments to implement land-use regulation that would result in safe building practices in flood hazard areas. This requires local governments to develop flood hazard maps to assess how to manage particularly vulnerable floodplain areas. In this study we suggested a design manual and the management system of flood hazard map.

  • PDF

Assessment of Criteria for selecting Rainwater Management Strategies (도시 물순환 건전화를 위한 빗물관리 계획요소 평가)

  • Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.9-17
    • /
    • 2010
  • The purpose of this study is to draw out objective bases for selecting various applicable facilities in case of the establishment of rainwater management strategies. To do so, sixteen facilities were selected from decentralized rainwater management systems that induce rainwater infiltration and detention as well as centralized end-of-pipe type infiltration and detention facilities in local areas. With these facilities, it attempted to evaluate them in terms of sustainability, pollutant elimination, flood control capacity and costs and subsequently analyzed correlations between each characteristic. The outcomes of the analysis were as follows: First was the analysis of characteristics between decentralized rainwater management systems and end-of-pipe rainwater management systems. From the decentralized rainwater management systems, the mulden-rigolen system and grass swale at street level had the highest in the total of the four items while the totals of the underground detention tank and temporary detention site were highest in end-of-pipe rainwater management systems. After analyzing the correlation between different types of facilities and each variable, it can be said that decentralized rainwater management systems have a higher correlation than end-of-pipe rainwater management systems in terms of sustainability whereas the latter are better in flood control capacity than the former. Second, the analysis of correlation in variables of each facility is as follows: first, there is a negative correlation between sustainability value and flood control capacity value; and there is a positive correlation between flood control capability and pollutants elimination. In addition, it revealed that the higher the flood control and pollutant elimination capability the higher the facility costs. Based on these assessments, it is possible to use them as objective selection criteria for facility application in case of site development project or complex plan.

Housing / Urban Development Integrated with Flood-Control Reservoirs in Japan

  • Watanabe, Naoyuki
    • Land and Housing Review
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2014
  • The purpose of this paper is to introduce two integrated urban development projects in Japan that take full advantage of flood-control reservoirs: the Tetsugakudo Park Collective Housing Development Project and the Koshigaya Lake Town Project. The former project - implemented cooperatively by the Tokyo metropolitan government in charge of river management, Shinjuku and Nakano wards (in Tokyo) responsible for park management, and the Urban Renaissance Agency, a housing project developer - set a significant precedent for three-dimensional river use by realizing the three-dimensional integrated development of a flood control reservoir, a park, and collective housing. The Koshigaya Lake Town Project, launched as a drastic storm water management measure for a low-lying area often plagued by flooding, has achieved a sustainable coexistence between the waterfront environment and the urban living environment, with an artificial flood-control reservoir as the core for urban development. This project is fully committed to environmental coexistence through the optimal use of local environmental resources, with the cooperation of the central government, Saitama Prefecture and Koshigaya City.

Development and the Application of Flood Disaster Risk Reduction Index (홍수피해저감지수(FDRRI) 개발 및 시범적용)

  • Moon, Seung-Rok;Yang, Seung-Man;Choi, Seon-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • Community-based disaster preparedness approaches are increasingly important elements of vulnerability reduction and disaster strategies. They are associated with a policy trend that values the knowledge and capacities of local people. In this research, we describe the community diagnosis method and develop Flood Disaster Risk Reduction Index(FDRRI) for assessment of flood vulnerability. FDRRI is composed of four indicators such as Flood Exposure Indicator(FEI), Sensitivity Indicator(SI), Risk Reduction Indicator(RRI), and Community Preparedness Indicator(CPI). We anticipate to present the guideline for selection national preparedness projects and uplift community's preparedness capacity.

Study on River Management Plan Considering Ecological Preservation and Flood Control of Riverine Wetland (하도습지의 생태보전 및 치수를 고려한 하천관리 방안 연구)

  • Ann, Byoung-Yun;Kim, Taek-Min;Hong, Seung-Jin;Kim, Gil-Ho;Kim, Soo-Jun;Kim, Jae-Geun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.463-476
    • /
    • 2014
  • The riverine wetlands located in the riverside bring about social conflicts through confrontation between flood control value through flood control project and ecological preservation value of riverine wetland. In this study, we identified the importance of both values through analysis of economic feasibility of flood control and ecological values of riverine wetland, and tried to suggest management plans for riverine wetland considering both of flood control safety and ecological preservation through these results. For this, we calculated the expected annual flood damage of Imjin River using the multi-dimensional flood damage analysis(MD-FDA), and calculated the total value of riverine wetland using the contingent valuation method(CVM) to estimate preservation value of riverine wetland. The result of the analysis shows that the Imjin River needs flood control project and the ecological preservation of riverine wetland is also important. Therefore, the establishment of the management plan for protecting riverine wetland is also needed. As a result, the Imjin riverine wetland was classified as the area where sedimentation continues to take place, and the flood water level to rise. On the basis of the analyzed results, it is judged that the Imjin River needs flood control for public safety and ecological consideration for ecosystem preservation in the river improvement project. So, the stepwise river improvement is desirable to protect riverine wetland and minimize ecosystem disturbance. The results is expected to be made good use as the basic study for establishment of institutional river management plans considering flood control project and riverine wetland preservation in the future.