• Title/Summary/Keyword: Floc Growth

Search Result 20, Processing Time 0.033 seconds

An approach to predict size distribution of suspended sediment - cohesive sediment (유사의 입경분포 모의를 위한 방안 연구 - 점착성 유사의 경우)

  • Son, Minwoo;Byun, Jisun;Park, Byeoung Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.288-288
    • /
    • 2018
  • 점착성 유사는 응집 현상을 겪는 유사로, 응집 현상(Flocculation Process)는 응집 과정(Aggregation Process)와 파괴 과정(Breakup Process)의 경쟁으로 이루어진다고 여겨진다. 응집 현상을 통해 점착성 유사는 물과 점착성을 띠는 작은 입자들의 덩어리인 플럭(Floc)을 형성하여 흐름 내에서는 대부분이 플럭의 형태로 이동한다. 점착성 유사의 응집 모형 중 하나인 플럭 성장모형(Floc Growth Model, FGM)은 상미분 방정식으로 시간에 따른 플럭의 크기를 계산하는 모형이다. 응집과 파괴의 평형 상태에서 평균 입경을 얻는다. 이러한 FGM은 낮은 수치 계산 비용으로 합리적인 계산 결과를 얻을 수 있으며, 유사 이동 모형 혹은 흐름 모형과의 결합이 수월한 장점을 가진다. 또한, 닫힌 계(Closed System)에서 질량이 보존되는 특징이 있다. 반면, 결정론적인 특성을 띠면서 특정 플럭 크기만을 계산하기 때문에 점착성 유사의 입도 분포에 대한 정보를 얻을 수 없다. 결정론적 특성을 띠는 FGM에 추계학적 방법을 적용함으로써 특정 확률 분포형을 가지는 플럭의 입도 분포를 얻을 수 있다. 본 연구에서는 기 개발된 추계학적 FGM과 유사 이동 모형의 결합을 통해 변화하는 유수동역학적 조건에서 플럭의 입도 분포를 산정하고자 한다. 이전의 많은 실험실 실험 결과들은 부유가 발생한 상태를 유지하면서 수행되는 것으로, 특정 난류 특성(난류 소산 매개변수)와 특정 유사 농도 조건에서의 입도 분포를 얻는다. 그러나 하구부 및 하천의 하류는 조류의 영향을 받는 구간으로, 점착성 유사의 특성을 분석하기 위해서는 변화하는 유수동역학적 특성에 관한 고려가 필수적이라 할 수 있다. 결합된 점착성 유사 입도 분포 모형은 플럭의 침강과 재부유를 고려할 수 있는 특징을 가지며, 실측자료와의 비교를 통해 입도 분포를 합리적으로 모의하는 것으로 나타난다. 본 연구에서 개발된 점착성 유사 입도 분포 모형은 나아가 비점착성 유사의 입도 분포 모형과의 결합을 통해 두 종류의 유사가 혼재하는 구간에서도 합리적인 입도분포와 유사의 이동을 모의할 수 있을 것으로 예측된다.

  • PDF

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Flotation Separation of Biological Floc Using the Dissolved Air Flotation Process (용존공기부상(DAF) 공정을 이용한 생물학적 플록의 부상분리)

  • Kwak, Dong-Heui;Kim, Seong-Jin;Lim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.649-655
    • /
    • 2004
  • The behavior of biological particles in DAF (dissolved air flotation) process was analyzed by employing PBT (Population balance theory). After decline growth phase of activated sludge, the value of the initial collision-attachment efficiency was increased over than 0.35 corresponding relatively high value in the whole life cycle of microorganism. For practical application of DAF as a solid separation process. It is desirable that microbial particles should be operated to perform high solid removal efficiency in biological wastewater treatment.

Bio-floc technology application in olive flounder, Paralichthys olivaceus aquaculture according to the difference of closed recirculating systems (바이오플락 기술을 활용한 순환침전시스템에 따른 넙치(Paralichthys olivaceus)의 양성)

  • Cho, Yeong-Rok;Kim, Hyun-Soo;Kim, Su Kyoung;Kim, Su-Kyoung;Kim, Seok-Ryel;Hur, Young Baek;Kim, Jun-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • Juvenile Paralichthys olivaceus (mean weight 685.3±36.7 g) were raised in different and closed recirculating bio-floc system (control, bio-ball, and shelter) for 7 months. The water environment such as water temperature, dissolved oxygen, salinity, pH, and alkalinity according to the difference of closed recirculating system remained stable during the rearing period. No significant changes were observed in dissolved inorganic nitrogen such as ammonia, nitrite, and nitrate were observed in different closed recirculation system. The final weights according to the difference of closed recirculating were 1,524 g (control), 1,674 g (bio-ball), and 1,630 g (shelter). The survival rate was higher than 98%, and the final FCRs (Feed coefficient ratio) were 1.2, 1.1, and 1.2. The results of this study indicated high growth and survival rate in all systems.

Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose (급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성)

  • Jun, Hang-Bae;Park, Sang-Min;Park, Noh-Back;Jung, Kyung-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

Flocculation of microalgae using extracellular polymeric substances (EPS) extracted from activated sludge

  • Dong, Dandan;Seo, Dongmin;Seo, Sungkyu;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • This study investigates the role of microbial extracellular polymeric substances (EPSs) as bioflocculants to harvest microalgae (water-microalgae separation). The EPS extracted from waste activated sludge (WAS) by heat extraction were fractionated into soluble EPS (S-EPS), loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) forms. All the EPSs facilitated the flocculation of microalgal cells from stable growth medium. Of those EPSs, the TB-EPS showed the highest flocculating activity (FA) resulting in the substantial decrease in the amount of EPS added in terms of total organic carbon (TOC) during flocculation. The FA of microalgae was improved with the increase in TB-EPS dose, however, excessive dose of TB-EPS adversely affected it due to destabilization. Both LB- and TB-EPS could be utilized for flocculating microalgae as a sustainable option to the existing chemical-based flocculants. In addition to the conventional assessments, the effectiveness of the two bioflocculants for floc forming was also confirmed using a novel assessment of lens-free shadow imaging technique (LSIT), which was firstly applied for the rapid and quantitative assessment of microalgal flocculation.

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater

  • Kim, Byung-Hyuk;Choi, Jong-Eun;Cho, Kichul;Kang, Zion;Ramanan, Rishiram;Moon, Doo-Gyung;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.630-637
    • /
    • 2018
  • The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.

Intensive Culture of the Pacific White Shrimp Litopenaeus vannamei under Limited Water Exchange I. Indoor Nursery Culture of Postlarvae (사육수 비교환 방식에 의한 흰다리새우의 고밀도 사육 I. 후기유생(postlarva)의 실내 중간육성)

  • Jang, In-Kwon;Kim, Jong-Sheek;Cho, Kook-Jin;Seo, Hyung-Chul;Cho, Yeong-Rok;Gopalakannan, Ayyaru;Kim, Bong-Lae
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • Farming of the fleshy shrimp Fenneropenaeus chinensis which is a major cultured species in the west coast of South Korea, has been suffered :trom mass mortality due to disease epizootics including viruses. Since the Pacific white shrimp Litopenaeus vannamei was introduced to Korea in 2003, farming of this species has rapidly increased for years, occupying 62.5% of total cultured shrimp production in 2007. However the studies on L. vannamei culture methods for shrimp farming situations in Korea are very limited. Nursery culture of shrimp larvae has some advantages including increased survival, improved feed efficiencies, enhanced growth performance and reduced grow-out period. In this study, L. vannamei postlarvae (${PL_3}-{PL_{10}}$) with a density of $3,750-9,090/m^3$ were cultured in four raceways under limited water exchange condition for 35 days. Survival was the highest (93.6%) in tank stocked with $4,090/m^3$ and was the lowest in tank with $9,090/m^3$ (58.1 %). Mean body weight at harvest ranged from 0.071 to 0.108 g, and FCR was 0.59-0.70 in all tanks. Concentration of total ammonia nitrogen was increased up to 20 ppm on day 10 in all tanks and thereafter gradually decreased by the third week of culture. Nitrite-nitrogen was rapidly increased from the third week, representing bio-floc condition by developed nitrifying bacterial community. Of the present nursery system some modification of structure and consideration for commercial scale are needed in order to be implemented to shrimp farmers.

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF