• Title/Summary/Keyword: Floating-type breakwater

Search Result 27, Processing Time 0.022 seconds

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Control of Wave Screening Performance of Floating Breakwaters (부유식 방파에의 파랑 차단 성능 제어)

  • 양우석;조원철;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The numerical investigations on the wave-screening characteristics of floating breakwaters are presented. The fluid motion is idealized as linearized, two dimensional potential flow. A finite element model is adopted to analyze the performance of floating breakwaters. Numerical experiments are carried out for two type floating breakwater. One is a conventional pontoon type breakwater with rectangular cross-section, and the other is a side float breakwater which consists of two rectangular shaped floats connected to each other by a frame. To improve the performance of the floating breakwaters, especially for long-period wave conditions, numerical experiments are carried out for the cases attaching the thin plates at the bottom of folats in the vertical direction.

  • PDF

An Experimental Study of Improving the Efficiency of Pontoon-Type Floating Breakwaters (상자형 부유식 방파제의 소파성능 개선을 위한 실험적 연구)

  • Park Jae Hveon;Ahn Yong Ho;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.41-48
    • /
    • 2000
  • An experimental study is made to improve the efficiency of floating breakwaters. Wave transmission coefficients highly depend on the drafts of the floating breakwaters but not on the mooting chain weights. Array of two breakwaters can improve the efficiency of the floating breakwaters. Proper draft combination of the fore and the aft bodies may improve the performance of the floating breakwaters lot various wave periods.

  • PDF

Transmission coefficients of a floating rectangular breakwater with porous side plates

  • Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-65
    • /
    • 2016
  • The interaction between incident waves and a floating rectangular breakwater with the vertical porous side plates has been investigated in the context of the two-dimensional linear potential theory. The matched eigenfunction expansion method(MEEM) for multiple domains is applied to obtain the analytic solutions. The dependence of the transmitted coefficients and motion responses on the design parameters, such as porosity and protruding depth of side plates, is systematically analyzed. It is found that the non-dimensional wavelength where the sudden drop of transmission coefficients occurs, corresponds to the heave resonant frequency obtained from Ruol et al. (2013) for $\pi$-type floating breakwater. It is concluded that both properly selected porosity and deeper protruding depth of side plates are helpful in reducing the transmission coefficients and also extending the wider applicable extent of incident wavelength for performance enhancement.

Static Tension Analysis Method for Floating Tire Breakwater (부 타이어 소파제의 정적 장력 해석 방법)

  • YOON Gil-Su;CHU Weon-Hyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with static tension analysis method for Floating Tire Breakwater(FTB). FTB can be used for the limited wave height. It is especially focused on Goodyear type FTB easily applied to the breakwater for the fisheries cultivating region. The numerical examples for FTB design procedure was reviewed. It is also studied the static analysis method of offshore catenary spread mooring system. The general calculation procedure for the tension versus excursion curves for the multi-line system using the basic catenary relationship was studied. Calculation results showed good agreement with some existing mooring results. To extend this mooring force calculating method to the floating fisheries caitivating cages, the strength of synthetic fiber was considered. This analysis method can be used to the estimation of the mooring force for the floating structures such as floating breakwaters and floating artificial reefs.

  • PDF

A Study of Wave Control by New Type Floating Breakwater (신형식 부방파제의 파랑제어에 관한 연구)

  • 김도삼;이광호;최낙훈;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this study, several new types of floating breakwater are proposed according to the geometry of the vertical barrier and the existence of horizontal plate, and are compared to the steel floating breakwater adopted in Won-Jun fishing port and the performance of wave control is numerically investigated by using Green function method. From the numerical results, model attached the horizontal barrier under the vertical barrier is more efficient for reflection and transmission coefficient than the steel floating breakwater in Won-Jun fishing port. It is confirmed that the transmitted waves can be controlled efficiently by optimizing the length and distance of a vertical and horizontal barriers.

Performance Characteristics of Interference-Type Floating Breakwaters with Various two-dimensional Sectional Shapes (간섭식 부방파제의 2차원 단면형상 소파성능)

  • Song, Mu-Seok;Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • The characteristics of the floating breakwater is briefly reviewed and their performance is numerically investigated. The numerical scheme is a boundary integral method for inviscid potential flows, and various two-dimensional floating breakwater modules are studied focusing on the transmission coefficient. The general characteristics of pontoons is studied as function of mooring line stiffness, mass moment inertia and draft. Trapezoidal-, hat- and table-shape cross-sections are also studied with varying shape-parameters. The efficiency varies with changes in each shape-parameter and for some cases satisfying tranquility can be expected with even longer waves.

  • PDF

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves (약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석)

  • Lee, Jeongwoo;Cho, Woncheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.539-549
    • /
    • 2006
  • The performance of a pontoon-type floating breakwater (FB) is investigated numerically with the use of a second-order time domain model. The model has been developed based on potential theory, perturbation theory and boundary element method. This study is focused on the effects of weakly nonlinear wave on the hydrodynamic characteristics of the FB. Hydrodynamic forces, motion responses, surface elevation, and wave transmission coefficient around the floating breakwater are evaluated for various wave and geometric parameters. It is shown that the second-order wave component is of significant importance in calculating magnitudes of the hydrodynamic forces, mooring forces and the maximum response of a structure. The weak non-linearity of incident waves, however, can have little influence on the efficiency of the FB. From numerical simulations, the ratio of draft and depth, the relationship of wave number and width are presented for providing an effective means of reducing wave energy.

PIV Applications for Flow Analysis of Floating Breakwater with double barriers (이흘수판형 부소파제 주위의 유동해석을 위한 PIV 적용)

  • Kim, Ho;Cho, Dae-Hwan;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.53-58
    • /
    • 2006
  • Along with the development of costal engineering, various type of breakwaters have been built. The main purpose of breakwaters are to provide harbour protection against waves, to stabilize beaches against erosion due to large wave action, and to provide for temporary wave protection for installation on or under water surface. This paper an application example of PIV system for analyzing the flow of Floating Breakwater with double barriers. We introduce an analysis method to predict the characteristics of flow around the neighboring fields of Floating Breakwater with double barriers in order to develop a high performance model. Flow visualization has conducted in circulating water channel by a high speed camera and etc. Flowing phenomenon according to velocity distribution and flow separation around the breakwater with double barriers were obtained by 2-D PIV system.

  • PDF