• Title/Summary/Keyword: Floating slab

Search Result 70, Processing Time 0.042 seconds

The Development of a Floating Slab Track to Isolation System (플로팅 슬래브 궤도용 방진시스템 개발)

  • Park, Sang Gon;Koo, Hyung Wook;Han, Hyun Hee;Chun, Chong Keun;Jang, Seung Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.636-641
    • /
    • 2013
  • Recently the construction of stations under railway lines and railway sections passing through central area of cities are increasing, calling for an urgent establishment of countermeasures against railway vibration and its subsequent second-phase noise. Of technology developed up to now, the most efficient countermeasure is the floating slab track, a track system isolated from the sub-structure by springs. Unfortunately, however, the system design technology and technology for key components have not yet developed in Korea. As such, in this study, the analysis and design technology of floating slab track and its vibration isolator technology can be achieved. In preparation for future demands, it is expected to raise awareness for the need of technology self-support and to make a meaningful contribution to mitigating vibration and noise produced by the next-generation high-speed railway.

  • PDF

Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model (비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석)

  • Jang, Seung Yup;Park, Jin Chul;Hwang, Sung Ho;Kim, Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

A Study on characteristics of vibration of a floating slab track according to change of stiffness of track (궤도하부강성 변화에 따른 방진슬라브 궤도의 진동특성 연구)

  • 강윤석;양신추;오지택
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.572-579
    • /
    • 1998
  • In this paper, an analytical model for analyzing the interaction between train and floating slab track is presented. Train is modelled by 4-lumped masses system which are composed of a carbody supported by secondary suspension, a bogie frame supported by primary suspension, and two wheelsets supported by nonlinear Hertzian springs. In the track model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast on slab. The slab supported by discrete isolators put on fixed floor is modelled by finite beam elements. Numerical analyses are carried out to examine anti-vibration effect of the GERB slab track which is same type laid in Puchon station on the subway No. 7 Line.

  • PDF

Design of floating Slab according to Dynamic Load (동하중을 고려한 플로팅궤도 슬래브 설계)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa;Jo, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.268-272
    • /
    • 2010
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, floating slab was divided into three spans, $k_{dynamic}$ use by examining reactions and member forces was to ensure safety.

  • PDF

Design and Construction of Floating Slab Track (저진동 궤도슬래브의 설계와 시공)

  • Lee, Eun-Ho;Kim, Yong-Jae;Park, Myoung-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.214-219
    • /
    • 2008
  • Recently, railway has been pointed to the efficiency of transportation, rapid transit, and comfortable train ride. In the case of domestic situation, both rapid transit railway and existing railway have been operated in higher speed and the construction of railway near the city building has been increased as well. Because of the rapid transit system and heavy railway, the noise and vibration of railway has been increased so that the strong standards in terms of environmental matter should be required. Therefore, the solution to avoid environmental matters becomes one of the most important factor in constructing railway. In this study, floating slab system which is one of the solution to avoid noise and vibration in railway has been introduced, and the foreign technology and the trend of this business has been investigated. In addition, the method of conceptual design and construction of floating slab system according to the isolator has been introduced.

  • PDF

Development of a numerical method for system design of slab track (슬래브궤도의 시스템설계 기법개발)

  • 양신추;강윤석;이영제
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.455-462
    • /
    • 1999
  • Tn this paper. a numerical method for the system analysis of the slab track is presented. In the model rail is considered to have a distributed mass and to be supported by sleepers discretely on slab. The slab supported by discrete slab pads- isolators Put on floor is modelled by finite beam elements The system analysis for the same type floating slab laid in Puchon station is carried out using the developed program. Then the numerical results are compared with system requirements for slab track.

  • PDF

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.

Experimental Study on the Evaluation of Behavior for Floating Track System Using a Resilient Rubber Mat (고무방진매트가 적용된 플로팅궤도시스템의 거동분석을 위한 실험적 연구)

  • Lee, Siyong;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • The objective of this study was to estimate the vibration reduction capacities of a floating track system using a resilient rubber mat, and to compare the results with the track support stiffness and track impact factor of a conventional slab track system by performing field tests using actual vehicles running along a service line. The theoretically designed track support stiffness and track impact factor were compared with the measured track support stiffness and track impact factor for each tested track. The calculated and measured track support stiffness of the floating track system were found to be similar, and the floating track system satisfied the design specifications of the track impact factor. The overall vibration level and track support stiffness of the floating track system were thereupon found to be significantly lower than those of the conventional slab track system. The experimental results thus showed that the vibration reduction effect of the floating track system is greater than that of the conventional slab track.

Introduction and Preliminary Design of Floating Slab Track for Rapid Transit Railway (고속철도용 플로팅 슬래브 궤도의 도입과 기본설계)

  • Kim, Yong-Jae;Lee, Eun-Ho;Park, Myoung-Gyun;Moon, Je-U;Park, Man-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.141-144
    • /
    • 2008
  • Recently, railway has been pointed to the efficiency of transportation, rapid transit, and comfortable train ride. the construction of railway near the downtown area and station building are increasing for maximization of utilization and convenience. but the heavy of transportation and rapid transit lead to increase noise and vibration. the noise and vibration of railway may cause the civil appeal, decline in the serviceability and insufficiency of environmental standard. Therefore, the solution to avoid environmental matters becomes one of the most important factor in constructing railway. In this study, floating slab system which is one of the solution to avoid noise and vibration in railway has been introduced, and the concept of preliminary design and vibration absorber of floating slab system according to the isolator has been introduced.

  • PDF

The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise (완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구)

  • Hwang, J.S.;Moon, D.H.;Park, H.G.;Hong, S.G.;Hong, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.