• Title/Summary/Keyword: Flight scenario

Search Result 65, Processing Time 0.019 seconds

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

Development of Radar HILS System and Verification Radar Performance Scenario-based (레이다 비행 모의 장치 개발 및 시험 시나리오 기반 레이다 성능 검증)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.574-579
    • /
    • 2023
  • The radar flight test has many restrictions on simulating various targets, clutter and jamming signal. Therefore, in this study, a radar HILS system that performs a radar operation simulation function according to an operation scenario was developed. Radar HILS simulates the radar mission environment through radar beam operation simulation, radar operation control, simulated signal generation, and flight attitude simulation.. HILS generates and modulates simulated target signals(single, multiple targets) containing radar mission environments(clutter, jamming etc.) based on flight scenarios, and transmits them to AESA radar over RF. And Scenario-based radar performance was verified by detecting simulated targets and confirming detection results.

Autonomous flight Algorithm Design (자율형 운항 알고리즘 설계 연구)

  • Lee, Dae-Yong;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.122-130
    • /
    • 2012
  • Airborne separation assurance is a key requirement for Free Flight. This paper is to propose autonomous flight algorithm, such as extended authority of delegation, efficiency of airspace issue to deal with the empirical solution for free flight, and to measure flight efficiency and conflict detection and resolution (CD&R) by utilizing flight performance data under the two circumstances of scenario with the modeling of proposed algorithm and potential field algorithm. The results show that the autonomous flight algorithm is superior to the potential field algorithm under the circumstances of free flight airspace in terms of algorithm performance, CD&R, and flight efficiency.

Prediction of the Flight Times of Hydrochara affinis and Sternolophus rufipes in Paddy Fields Based on RCP 8.5 Scenario (RCP 8.5 기후변화 시나리오를 적용한 논 서식 애물땡땡이 (Sternolophus rufipes)와 잔물땡땡이(Hydrochara affinis)의 비행시기 예측)

  • Choi, Soon-Kun;Kim, Myung-Hyun;Choe, Lak-Jung;Eo, Jinu;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.16-29
    • /
    • 2016
  • The total area of paddy field was estimated to be 55 % of the cultivated lands in South Korea, which is approximately 1 million hectares. Organisms inhabiting paddy fields if they are sensitive to environmental changes can be environmental indicator of paddy fields. Biological indicators such as phenology and distributional range are evaluated as intuitive and quantitative method to analyze the impact of climate change. This study aims to estimate flight time change of Hydrophilidae species' based on the RCP 8.5 climate change scenario. Unmanned monitoring systems were installed in Haenam, Buan, Dangjin and Cheorwon relative to the latitudinal gradient. In the three regions excepting Cheorwon, it was able to measure the abundance of flying Hydrochara affinis and Sternolophus rufipes. Degree-day for the flight time was determined based either on field measurement values and estimates of 2020s, 2050s and 2080s from KMA climate change scenario data. As a result, it is found that date of both species of initial flight becomes 15 days earlier, that of peak flight becomes 22 days earlier and that of final flight does 27 days earlier in 2080s compared to 2020s. The climate change impact on flight time is greater in coastal area, rural area and valley than inland area, urban area and plan. H. affinis and S. rufipes can be used as climate change indicator species.

GNSS Airborne Multipath Error Modeling Under UAV Platform and Operating Environment

  • Kim, Minchan;Kim, Kiwan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through a flight test, and this was analyzed and compared with the error model of an existing manned aircraft. The flight test was conducted based on a scenario in which UAV performs hovering at an altitude of 40 m, and it was found that the multipath error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, indicating that the multipath errors of the UAVs cannot be canceled out.

Effect of Weather, Flight, and Time Conditions on Anxiety and Time Perception of Helicopter Pilots in Flight (기상, 비행 및 시간 조건이 조종 중인 헬리콥터 조종사의 불안 및 시간지각에 미치는 영향)

  • MunSeong Kim;ShinWoo Kim;Hyung-Chul O. Li
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2023
  • Aircraft are representative of human-machine systems. There is a delay between the human operation and the completion of the machine operation such as when the machine starts to operate and when the force is transmitted to the machine and completed. Time perception is an important component of timing tasks and is known to be affected by the anxiety associated with high arousal. This research verified the impact of weather, flight, and time conditions on the anxiety and time perception of in-service pilots in a virtual reality area. Weather conditions were divided into visual flight weather conditions and very low visibility conditions. Experiments 1 and 2 were performed with different flight and time conditions. In Experiment 1, time perception was measured by employing a button added to the control rod in the scenario of hovering and level flight with relatively little transformed in momentum and little delay. In Experiment 2, time perception was measured in the procedure of naturally taking off the helicopter by employing only the control stick in a takeoff scenario where there was a lot of transformation in momentum and a lot of delays. As a result of the experiment, it was reported that anxiety and heart rate increased in very low visibility conditions In particular, among all flight conditions in Experiments 1 and 2, it was reported that time was overestimated in the scenario of increased anxiety. This outcome can lead to overestimation of time under the impact of anxiety and failure of the timing task, which may lead to challenges in maneuvering and possibly lead to accidents.

Method Analysis to realize Drone Delivery Service (드론택배 서비스 실현 방안분석)

  • Kim, Younghwa;Jeong, Younseo;Park, Moonsung;Lee, Dongsoo
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.70-80
    • /
    • 2018
  • Drones are now widely used in civilian applications such as filming, leisure, agricultural control, monitoring, and the generation of 3D-spatial information, deviating only from military drones. In the field of logistics, prototypes are emerging in the area of logistics transportation, and to develop a future transportation service under the name of a drone tax, each country is introducing its first flight results using its own unique drones. In this paper, we review the domestic and overseas trends of drone delivery service technology, which requires various capabilities such as automatic flight, and review the related core technologies. We then propose the flight capability and road map of a drone delivery service according to the detailed conditions such as the flight area, visibility, and flight method. Additionally, in connection with the postal processing of the Korea Post Office, which would be a main demand for this type of service, we describe a method for realizing a drone delivery service based on the structure, scenario, and deployment of the drone delivery system.

States and Modes Analysis for Flight Control of Smart UAV (스마트 무인기 비행제어 상태/모드 분석)

  • Oh, Soo Hun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.43-48
    • /
    • 2005
  • This paper describes the results of applying States and Modes Analysis, one of the requirements analysis techniques, to the development requirements of flight control software for Smart UAV. State/mode table enabled us to investigate various operation and design concepts, and as a result essential requirements for flight control software were established without omitting necessary requirements. Through the use of scenario-specific state transition diagrams, dynamic behaviours and control/response interfaces between each state and mode could been clearly identified, which made it possible to establish requirements related to dynamic behaviours of states and modes which are essential to the design of flight control software.

  • PDF

KSR-III 비행시험 발사 시나리오 개발

  • Shin, Myoung-Ho;Seo, Jin-Ho;Kim, Kwang-Soo;Hong, Il-Hi
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.140-152
    • /
    • 2003
  • Scenario is a guiding principle of launch operation and control for rocket and ground support system. Therefore, developing a scenario is the first step to prepare for rocket launch, which is a critical task for success of KSR-III flight test. The launch scenario for KSR-III flight test is a procedural sequence of command and control signals to be given to rocket and ground support systems. In this paper, the UML object modeling method is applied to development of a launch scenario. First, the subsystems of the launch system are modeled by objects, and then the interfaces between each two subsystems are modeled by association links. The finally obtained object diagram of KSR-III launch system is used to analyzing flow of data and commands and control signals, and interactions. The scenario includes the sequences of pre-launch/launch operations and emergency operations.

  • PDF

Design, Implementation, and Flight Tests of a Feedback Linearization Controller for Multirotor UAVs

  • Lee, Dasol;Lee, Hanseob;Lee, Jaehyun;Shim, David Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.740-756
    • /
    • 2017
  • This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of multirotor UAVs. We also propose a dynamic equation that reflects the aerodynamic effects of the vehicles; the equation's parameters can be determined through curve fitting using actual flight data. We derive the feedback linearization controller from the proposed dynamic equation, and propose a Luenberger observer to attenuate measurement noises. The proposed algorithm is implemented using our in-house flight control computer, and we describe its implementation in detail. To investigate the performance of the proposed algorithm, we carry out two flight scenarios: the first scenario, an autonomous landing on a moving platform, is a test of maneuverability; the second, picking up and replacing an object, test the algorithm's accuracy. In these scenarios, the proposed algorithm precisely controls multirotor UAVs, and we confirm that it can be successfully applied to real flight environments.