• Title/Summary/Keyword: Flight attitude

Search Result 240, Processing Time 0.022 seconds

A Study on the Effect of Nonverbal Communication of Airline's Flight Crew on Customer Attitudes

  • Lee, Yun-Young;Park, Hye-Yoon
    • Journal of Distribution Science
    • /
    • v.16 no.7
    • /
    • pp.17-24
    • /
    • 2018
  • Purpose - This study focuses on the quality of nonverbal communication by the flight attendants at the airline, and the factors that contribute to improve customer behavior, thereby providing positive implications for corporate management. Research, design, data, and methodology - For the empirical analysis of this study, reliability analysis and frequency analysis were conducted. T-test and ANOVA analyses were performed. In addition, the effects of nonverbal communication have on customer behavior have regressed analysis. The collected data was empirical suing the SPSS Win 18.0. Results - Among the non-verbal communication qualities were found to significantly influence customer attitudes, and demographic differences in airline flight attendants were also shown to influence their perceptions. Empirical analysis revealed significant differences in demographic characteristics between gender, age and airlines used. Conclusions - All of the non-verbal communication's attributes were found to significantly impact customer attitude. It is used to train the importance of nonverbal communication quality for the role of cabin crew members and to enhance the loyalty of the customers to Airline. This study identifies the relationship between the impact of non-verbal communication quality on customer attitudes and implies the importance of non-verbal communication quality for airline flight attendants. Also, this study suggests that there is a close mechanism between the nonverbal communication and the customer attitudes to airlines.

Flight Dynamics Modeling Using Quaternions (쿼터니언을 이용한 비행운동 모델링)

  • 황명신;박욱제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.187-187
    • /
    • 2000
  • This paper presents the comparison of Euler-Rodrigues quaternion and Euler Angles using attitude kinematics for aircraft flight simulation. It is hard for PC-Level to accomplish real-time simulation. The purpose of this paper is to accomplish real-time simulation of the aircraft dynamics modeling parts and the graphics parts. The computation time is more reduced in case of applying quaternions than Euler Angles. This paper provides a quaternions algorithm and it's applications for the real-time simulation.

  • PDF

Design Update of Transition Scheduler for Smart UAV (스마트 무인기의 천이 스케줄러 설계개선)

  • Kang, Y.S.;Yoo, C.S.;Kim, Y.S.;An, S.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

FLIGHT SOFTWARE DEVELOPMENT FOR THE KODSAT

  • Choi Eun-Jung;Park Suk-June;Kang Suk-Joo;Seo Min-Suk;Chae Jang-Soo;Oh Tae-Sik
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.364-367
    • /
    • 2004
  • This paper presents the flight software of KoDSat (KSLV-l Demonstration Satellite) which performs demonstrating the KSLV-l (Korea Space Launch Vehicle-l)'s satellite launch capability. The KoDSat Flight Software executes in a single-processor, multi-function flight computer on the spacecraft, the OBC (On Board Computer). The flight software running on the single processor is responsible for all real-time processing associated with: processor startup and hardware initialization, task scheduling, RS422 handling function, command and data handling including uplink command and down-link telemetry, attitude determination and control, battery state of charge monitoring and control, thermal control processing.

  • PDF

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

An Empirical Research on Factors Composing the Flight Attendant Organization's Safety Leadership (스타트업 항공사 객실승무원 조직의 안전리더십 구성요인에 관한 실증연구)

  • Kwon, Eun-Hyung;Kim, Kee-Woong;Choi, Yeon-Chul;Kim, Geun-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.117-123
    • /
    • 2021
  • A startup airline is motivating its flight attendants to do voluntary and effective safety behavior as well as setting up safety culture in its organization at the same time in the early stage of revenue-flight service due to the lack of flight operation experience compared to competing airlines. Based on the sample of flight attendants from a startup airline, this paper tried to perform empirical analysis which focused on relationship among safety leadership, safety motivation and safety behavior. According to empirical analysis, it was proven psychological resources had a significantly positive effect on work engagement. Work engagement is proven to have a significantly positive effect on both flight attendants' safety motivation and their safety work. It was also implied that flight attendants couldn't understand a contradictory attitude of their leaders because leaders had them focus on safety work engagement while not providing enough human resource and capital. In addition, it was found leader's excessive emphasizing safety policy might not result in flight attendants' safety behavior.

Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm (쿼드로터 자세제어를 위한 슈퍼 트위스팅 알고리즘의 성능 분석)

  • Jang, Seok-ho;Yang, You-young;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.373-381
    • /
    • 2020
  • Quadrotor is simple to model because of the symmetric structure but it has the disadvantage of being relatively sensitive to the external disturbance and system uncertainty. The PID technique applied for the attitude control of quadrotor has been applied comprehensively, but it has a disadvantage that is hard to precise control in the nonlinear system. In this work, a quadrotor attitude control law using the super twisting algorithm is studied, which has robust characteristics against disturbance and system uncertainty. To evaluate the attitude performance by the proposed technique, simulation studies and actual flight tests are carried out, and compared with the conventional PID controller.

Model Following flight Control System Design (준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계)

  • Choe, Dong-Gyun;Kim, Shin;Kim, Jong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

Test Setup for Flight Sensor Dynamics and Compensation of Time-delayed Position Output (비행 센서의 동특성 측정과 위치 출력의 시간 지연 보상)

  • Park, Sang-Hyuk;Lee, Sang-Hyup
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.16-20
    • /
    • 2010
  • The dynamic characteristics of flight sensors is obtained by a simple method that deploys a pendulum with a rotary encoder. The encoder output is used with kinematic relations to derive reference signals for various flight sensors, including position, velocity, attitude, and angular rate sensors as well as accelerometer and magnetic sensors. A time delay of 0.4 seconds is found in the position output of the flight sensor under investigation. A logic to compensate for the time delay using a velocity information is proposed and validated in flight tests.

Design of Emergency Destruction System for Long-range Surface-to-Air Missile Flight Test (장거리 대공 유도탄 비행 시험을 위한 안전종료판단시스템 설계)

  • Eunyoung Noh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.466-473
    • /
    • 2024
  • An Emergency Destruction System is inevitable for ensuring safety both at sea and in populated areas, particularly during emergency detonations triggered by abnormal missile flight or upon mission completion. This paper introduces a novel method for developing an Emergency Destruction System capable of precisely calculating the Instantaneous Impact Point(IIP) during high-speed, maneuverable long-range surface-to-air missile flight tests. The Emergency Destruction System designed for long-range surface-to-air missile flight tests generates impact position tables that meticulously incorporate wind errors and navigation equations based on the Earth's ellipsoidal model. Factors such as the Coriolis effect and the direction of the gravitational acceleration vector are accounted for, significantly enhancing the accuracy of IIP determination amidst highly variable missile speed and attitude.