• Title/Summary/Keyword: Flight Simulation

Search Result 880, Processing Time 0.029 seconds

Availability Performance Analysis of Korean Wide Area Differential GNSS Test Bed (한국형 광역보정시스템 테스트베드 가용성 성능 분석)

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.510-516
    • /
    • 2011
  • For using Global Navigation Satellite System(GNSS) in the civil aviation, it should satisfies the Required Navigation Performances(RNPs) which are defined by International Civil Aviation Organization(ICAO). RNP defines the required accuracy, integrity, availability, continuity of each flight procedure. In order to guarantee user's integrity, user's protection level has to be overestimated. On the other hand, for improving user's availability, user's protection level has to be estimated tightly. Therefore protection level should be estimated as tight as possible while it assuring the user's integrity. This paper describes the current integrity function of Korean WAD GNSS test bed, and predicts the availability performance of Korean WAD GNSS by simulation.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Modeling and Simulation of Aircraft Motion for Performance Assessment of Airborne AESA Radar Considering Wind and Vibration (바람과 진동을 고려한 항공기 탑재 AESA 레이다 성능 평가용 운동 모델링 및 시뮬레이션)

  • Lee, Donguk;Im, Jaehan;Lee, Haemin;Jung, Youngkwang;Jeong, Jaehyeon;Shin, Jong-Hwan;Lee, Sungwon;Park, June Hyune;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.903-910
    • /
    • 2020
  • This paper introduces a simulator to assess the impacts of the wind and the airframe vibration on the performance of the Active Electronically Scanned Array (AESA) radar mounted in an aircraft. The AESA radar is mounted on the nose cone of an aircraft, and vibration occurs due to the drag force. This vibration affects the behavior of the AESA radar and can cause phase errors in signal. The simulator adopts the geometric model for nose cone, the mathematical models on the rigid-body dynamics of the aircraft, the average/turbulent winds, and the mode/ambient vibrations to compute the position and the attitude of the radar accurately. Numerical studies reflecting a set of test scenarios were conducted to demonstrate the effectiveness of the developed simulator.

A Study on the Design and Implementation of a DSSS-based MODEM for a Right Termination System(FTS) (대역확산방식 비행종단시스템의 모뎀설계와 구현에 관한 연구)

  • Lim Keumsang;Kim Jaehwan;Cho Hyangduck;Kim Wooshik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.175-183
    • /
    • 2006
  • This letter proposes a Direct Sequence Spread Spectrum (DS-SS)-based Flight Termination System(FTS) and show the simulation results and implements the system using FRGAs. The DS-SS FTS has immunity interference signals and the influence of jamming signal. Moreover, a DS-SS FTS can provides effects on an authentication and encryption with spread codes. And the system uses more less power than an analog FM system. We used Reed-Solomon (32, 28) code and triple Data Encryption Standard(3DES) for error correction and data encryption. Also we used counter algorithm for unauthenticated device's attack The spread codes of In-phase channel and Quadrature channel were generated by Gold sequence generators. The system was implemented in Altera APEX20K100E FPGA for the ground system and EPF10K100ARC240-3 for the airborne system.

Scaling Methods for Icing Wind Tunnel Test (결빙 풍동시험을 위한 스케일링 기법 연구)

  • An, Young-Gab;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.146-156
    • /
    • 2012
  • In-flight icing remains as one of the most persistent hazards for aircraft operations. The effect of icing on aircraft performance and safety has to be evaluated during the development and airworthiness certification process. The scaling method is a procedure to determine the scaled test conditions in icing wind tunnels in order to produce the same result as when the reference model is exposed to the desired cloud conditions. In this study, a scaling program is developed to provide an easy-to-use tool to the aero-icing community. The Olsen and Ruff 4th methods are employed for this purpose and the velocity is calculated by matching the dimensionless Weber number. To validate the program, the results are compared with the NASA scaling results. The scaling examples based on FAR (Federal Aviation Regulation) Part 25 Appendix C are also presented. Finally, a validation study using a state-of-the-art icing simulation code FENSAP-ICE is presented.

An Exploratory Study on the Speed Limit of Compound Gyroplane(2) : Speed and Wing Sizing (복합 자이로플레인의 한계 속도에 대한 탐색연구(2) : 속도 및 날개 사이징)

  • Shin, Byung-Joon;Kim, HakYoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.978-983
    • /
    • 2015
  • A study on the speed limit and sizing of auxiliary fixed-wing of compound gyroplane was performed. The performance of the plane that uses the same rotor system and power of BO-105 helicopter was compared with that of BO-105 helicopter. The wing area which is used to compensate in lift, was calculated considering the aerodynamic characteristics and lift sharing ratio of the rotor. Achievable flight speeds were observed for two types of fuselage; BO-105 and streamlined bodies. The study showed that the autorotating rotor can share 1/2 of lift at high speed and the parasite power of compound gyroplane having streamlined body and small wing can be minimized, accordingly it can fly faster than helicopter with airspeed more than twice.

Aerial Video Summarization Approach based on Sensor Operation Mode for Real-time Context Recognition (실시간 상황 인식을 위한 센서 운용 모드 기반 항공 영상 요약 기법)

  • Lee, Jun-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.87-97
    • /
    • 2015
  • An Aerial video summarization is not only the key to effective browsing video within a limited time, but also an embedded cue to efficiently congregative situation awareness acquired by unmanned aerial vehicle. Different with previous works, we utilize sensor operation mode of unmanned aerial vehicle, which is global, local, and focused surveillance mode in order for accurately summarizing the aerial video considering flight and surveillance/reconnaissance environments. In focused mode, we propose the moving-react tracking method which utilizes the partitioning motion vector and spatiotemporal saliency map to detect and track the interest moving object continuously. In our simulation result, the key frames are correctly detected for aerial video summarization according to the sensor operation mode of aerial vehicle and finally, we verify the efficiency of video summarization using the proposed mothed.

A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations (다수의 인공위성-지상국 간 통신 스케줄 최적화 모형)

  • Jeong, Eugine;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

A Simulation Model Development to Analyze Effects on LiDAR Acquisition Parameters in Forest Inventory (산림조사에서의 항공라이다 취득인자에 따른 영향분석을 위한 시뮬레이션 모델 개발)

  • Song, Chul-Chul;Lee, Woo-Kyun;Kwak, Doo-An;Kwak, Han-Bin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.310-317
    • /
    • 2008
  • Although aerial LiDAR had been launched commercially several years ago, it is still difficult to study data acquisition conditions and effects with various datasets because of its acquisition cost. Thus, this research was performed to study data acquisition conditions and effects with virtually various datasets. For this research, 3D tree models and forest stand models were built to represent graded tree sizes and tree plantation densities. Also, a variable aerial LiDAR acquisition model was developed. Then, through controlling flight height parameter, one of the data acquisition parameters, virtual datasets were collected for various data acquisition densities. From those datasets, forest canopy volumes and maximum tree heights were estimated and the estimated results were compared. As the results, the estimated is getting closer to the expected during the data acquisition density increase. This research would be helpful to perform further studios on relations between forest inventory accuracy and LiDAR cost.

  • PDF