• Title/Summary/Keyword: Flight Procedure Design

Search Result 83, Processing Time 0.029 seconds

Development of a Design Program for Instrument Flight Procedure (계기비행절차 설계 프로그램 개발)

  • Song, Jae-Hoon;Kim, Hyuk;Jung, Hong-Ki;Lee, Jang-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.185-193
    • /
    • 2014
  • In this study, development process of a design program for Instrument Flight Procedure (IFP) is briefly described. Survey results and corresponding analysis are shown to enhance a market competence of the deliverables. Standards and regulations for IFP design are analyzed to derive the system requirements. Detail development processes and test procedures are explained.

A Study on the Risk Assessment Criteria to be applicable for Establishing Flight Procedure Design Process (비행절차설계과정에서 적용 가능한 위험평가기준 연구)

  • Kim, Dohyun;Kim, W.Y.;Jie, M.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Risk assessment should be processed when physical circumstances of airspace such as establishment of new flight procedures or reconstruction of existing airspace are planned to change and one of the alternatives for the change have to be selected. This is an effort to find the best alternative which is able to maintain at or above the acceptable risk level. ICAO and its contracting states provide specialized guidance material for 'Safety Management System' relating to handing airspace matters. These manuals include a conceptual framework for managing safety as well as some of the systemic processes and criteria used to meet the objectives of a State's safety programme. This criteria must be established in compliance with the State's laws and regulations for air safety and for the fulfillment of the State's safety goals. This study is to carry out the risk assessment criteria through literature reviews relevant to the safety management, and to propose the results of criteria to be applicable for establishing flight procedure design process.

Flight Loads Analysis of Smart UAV (스마트 무인기 비행하중 해석)

  • Shin, Jeong-Woo;Lee, Sang-Wook;Kim, Sung-Joon;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.513-518
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) has developed smart unmaned aerial vehicle(UAV) since 2002. Smart UAV has tilt rotor configuration which can take off and land vertically. For designing and developing smart UAV, it is necessary to obtain design loads. ARGON which use the panel method is multidisciplinary aircraft design program developed and modified by KARI and TsAGI. Panel method is very useful to obtain aerodynamic loads, so it have been used widely for aircraft loads analysis. For flight loads analysis, we have to prepare regulations and load conditions, and then design aerodynamic panel model, mass model and structure model. In this paper, we introduce the flight loads analysis procedure briefly, and show the smart UAV loads analysis procedure and result using ARGON.

  • PDF

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System (유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.479-488
    • /
    • 2019
  • The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Adaptive Fuzzy Controller Design for Altitude Control of an Unmanned Helicopter

  • Kim, Jong-Kwon;Park, Soo-Hong;Cho, Kyeum-Rae;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.590-593
    • /
    • 2005
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small unmanned helicopter is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. The nonlinear adaptive fuzzy controller design procedure and its applications for altitude control of unmanned helicopter were described in the paper. This research was concentrated on describing the design methodologies of altitude controller design for small unmanned helicopter acquiring autonomous take off and vertical movement. The design methodologies and performance of the altitude controller were simulated and verified with an adaptive fuzzy controller. Throughout simulation results, I showed that the proposed adaptive controllers have enhanced control performance such as robustness, effectiveness and safety, in the altitude control of the unmanned helicopter.

  • PDF

A Study on Optimal Airspace Design for Continuous Climb Operation (연속상승운항을 위한 최적 공역 설계에 관한 연구)

  • Kim, Eun-Young;Hong, Sung-Kwon;Lee, Keum-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.15-20
    • /
    • 2015
  • This paper introduces a new airspace design method for continuous climb operation (CCO). The optimization problem is formulated as Mixed-Integer Linear Program (MILP) to maximize the upper limits of altitude on the waypoints to facilitate continuous climb for aircraft. In the proposed method, the interactions with other flight procedures are considered as well as various aircraft flight performances. The proposed method is applied to one of the departure procedures of Incheon International Airport (ICN) to demonstrate its performances.

Parametric Optimization Procedure for Robust Flight Control System Design

  • Tunik, Anatol A.;Ryu, Hyeok;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.95-107
    • /
    • 2001
  • This paper is devoted to the parameter optimization of unmanned aerial vehicle's (UAV) flight control laws. Optimization procedure is based on the ideas of mixed $H_2/H_{\infty}$ control of multi-model plants. By using this approach, some partial $H_2$-terms defining the performance of nominal and parametrically perturbed Flight Control System (FCS) responses to deterministic command signals in stochastic atmosphere as well as $H_{\infty}$-terms defining robustness of the FCS can be incorporated in the composite cost function. Special penalty function imposed on the location of closed-loop system's poles keeps the speed of response and oscillatory properties for both nominal and perturbed FCS in reasonable limits. That is the reason why this procedure may provide reasonable trade-off between the performance and robustness of FCS that are very important especially for UAV. Its practical importance is illustrated by case studies of lateral and longitudinal control of small UAV.

  • PDF

Research of Part 23 Level Aircraft Engine Certificate Flight Test Procedure (Part 23 급 항공기 엔진인증 비행시험 절차 조사)

  • Ryoo, Seung-Hyun;Park, Young-Hoon;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • The engine is the most significant and essential part of the aircraft. As a result, systematical handling in the aircraft development stage is required from engine design to implementation to the full-scale airframe. This survey demonstrates the procedures demanded by the KAS 23 Civil Aircraft to acquire the engine Type Certification and the flight test procedures for ensuring the operational stability. Surveys were conducted on domestic and international aircraft engine certifications, technical regulations and documentations related to the Means of Compliance for flight test development stage. In addition, organized reference items that should be considered for the certification of engine flight test procedures were reviewed based on the KC-100.

Design of INM Input Generation Module for Aircraft Noise Analysis with Flight Procedures (비행 절차에 따른 항공기 소음 분석용 INM 입력 자료 생성 모듈 설계)

  • Choi, ChulHee;Eun, YeonJu;Jeon, DaeKeun;Jun, HyangSig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.178-182
    • /
    • 2012
  • PEAT(Procedure/airspace Efficiency Assessment Tool) evaluates the efficiency of the flight procedures designed by Procedure and Airspace Design Program, such as fuel consumption fight time, flyability, noise footprint and etc. For noise footprint analysis among the efficiency metrics, the input generation module for INM(Integrated Noise Model) was designed in this research. The INM input files shall contain the information about aircraft types, noise model, airport and runway configuration, number of flights, flight routes, and also should be satisfied with the exact file formats for input data, since INM is not originally executable with file inputs. Therefore, it has been designed to convert the input data given in XML file to DBF. In this paper, the design result of the module which has functionalities to generate appropriate input file for INM, and to convert and save the analysis results from INM, is presented.

  • PDF