• Title/Summary/Keyword: Flight Phase

Search Result 327, Processing Time 0.026 seconds

Proposed STAR Procedure of Incheon International Airport Considering Safety and Efficiency (인천공항 도착항공기의 안전 및 효율 향상을 위한 표준접근절차 수정방안 연구)

  • Chang, Jaeho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.292-297
    • /
    • 2016
  • Since continuous descent operations (CDO) is one of several tools available to aircraft operators and air navigation service providers (ANSPs) to increase safety, flight predictability, and airspace capacity while reducing noise, controller-pilot communications, fuel burn and emissions, widespread implementation of CDO would result in significant reductions in the environmental impact and aircraft operation costs in south korea as well. After analyzing each procedure from standard terminal arrival routes used for the Incheon international airport, it can be noticed that one of the procedures has a relatively high altitude constraint at initial approach fix than others, which lead the pilots to use unnecessary drag device in certain situations. Therefore we came to a conclusion that some arrival procedures need to be revised, so unnecessary procedure required during approach can be minimized, thereby reducing fuel consumption, noise and emissions compared to current approach procedures. And it is going to increase the safety margin significantly during approach phase due to reduced workload.

Rhus verniciflua Stokes Extract and Its Flavonoids Protect PC-12 Cells against H2O2-Induced Cytotoxicity

  • Nam, Tae Gyu;Lee, Bong Han;Choi, Hyo-Kyoung;Mansur, Ahmad Rois;Lee, Sang Gil;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1090-1097
    • /
    • 2017
  • Rhus verniciflua Stokes (RVS), an herbal medicine found in East Asia, was extracted and further fractionated to investigate its antioxidant capacity and neuroprotective effects. The RVS ethyl acetate (EtOAc) fraction had the highest level of total phenolics and antioxidant capacity among all solvent fractions tested. Pretreatment of PC-12 cells with the EtOAc fraction effectively attenuated $H_2O_2$-induced oxidative damage. Furthermore, the EtOAc fraction significantly attenuated caspase-3 activity, resulting in inhibition of $H_2O_2$-induced apoptosis. We identified and quantified fustin, sulfuretin, and butein in the EtOAc fraction using accurate mass quadrupole time-of-flight mass spectrometry and reversed-phase high-performance liquid chromatography. The intracellular antioxidant capacity and superoxide dismutase (SOD) activity were significantly increased in PC-12 cells treated with the EtOAc fraction and with individual flavonoids. When cells were pretreated with the EtOAc fraction or individual flavonoids and then co-incubated with diethyldithiocarbamic acid (an inhibitor of SOD activity), cell viability against $H_2O_2$-induced oxidative stress was attenuated. These results suggest that the RVS EtOAc fraction and its flavonoid constituents protect PC-12 cells against $H_2O_2$-induced neurotoxicity through their antioxidant properties.

Noninvasive Treatment and Rehabilitation of a Northern Goshawk (Accipiter gentilis) with Coracoid and Scapular Fracture (오훼골과 견갑골이 골절된 참매의 비침습적 재활 치료 성공 사례)

  • Kim, Mun-Jeong;Kim, Hee-Jong;Kim, Young-Jun;Park, Young-Seok;Kim, Bong-Kyun;An, Byeong-Deok;Park, Se-Young;Lee, Hang
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.396-399
    • /
    • 2017
  • This is a case report of a northern goshawk (Accipiter gentilis), admitted to the wildlife rescue center with right coracoid and scapular fracture which received conservative treatment and was soft-released successfully. At the admission, the goshawk had callus formed on the fractured bones, scars on eyebrows and severely damaged tail feathers with inability to fly. Cage rest was indicated to prevent further occurrence of fracture and to promote reunion of the fracture surface. The bird went through a rehabilitation process with appropriate physical training in flying cage to recover its fitness and flying ability. Complete molting of flight feathers with damaged rectrices was achieved during the rehabilitation period and its flight ability was recovered favorably. It was released into a proper habitat for northern goshawks, but the bird was found near the aviary where its last phase of rehabilitation was performed. A soft-release program was applied and finally the bird returned to near the first rescue location 235 km away from the release site.

The Value of Comparison with Four Dimension Time Resolved Imaging of Contrast Kinetics(TRICKS) MRA by Time of Flight(TOF) MRA (4차원 TRICKS 자기공명혈관조영술과 기존 TOF 자기공명혈관조영술의 비교 및 유용성)

  • Bae, Sung-Jin;Lim, Cheong-Hwan;Park, Byung-Rae;Shin, Woon-Jae;Kim, Jung-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.215-221
    • /
    • 2010
  • To assess the clinical value of time resolved imaging of contrast kinetics(TRICKS) MRA by comparison with conventional time of flight(TOF) MR angiography. Both TOF-MRA and TRICKS-MRA were performed in 17 patients with cerebrovascular disease and in 6 patients with brain tumor. Among 17 cerebraovascular patients, digital subtraction angiography(DSA) data were also obtained in 11 patients. TOF-MRA showed good spatial resolution but short in temporal resolution. Although TRICKS-MRA showed somewhat low spatial resolution, it showed superior temporal resolution by distinguishing vessel and tumor in all patients. Also, from the analysis of vessel-tumor relationship, TRICKS-MRA showed better performance than TOF-MRA. TRICKS-MRA makes it possible to image arterial, capillary and venous phase sequentially with very speedy manner and therefore, the clinical use of this method is highly suggestive for future use.

Three-dimensional Kinematic Analysis of the Yurchenko Layout with 360-degree Twist in Female Vaults: Deterministic Model and Judges' Scores

  • Park, Cheol-Hee;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Objective: The purpose of this study was to identify kinematic variables that govern successful performance and judges' scores and to establish correlative relationships among those of Yurchenko layout with a full twist in female vaults. Method: Four video cameras with sampling rate of 60 Hz collected 32 motion data of Yurchenko vaults from twenty-two female participants (age: $18.6{\pm}3.6years$, height: $153.0{\pm}6.5cm$, mass: $44.7{\pm}7.3kg$) during national competition. Posting processing and calculations of kinematic variables were performed in Kwon 3D XP and $Matlab^{(R)}$ programs. Correlation and regression analyses were applied to find the relationships between the obtained scores and kinematic variables. Deterministic model (Hay & Reid, 1988) was used to investigate the strength of correlative relationships among kinematic variables. Results: The obtained scores from the judges' decision were mainly affected by post-flight peak height, horse contact time, knee angle at landing, and horse takeoff angle. Strong blocking during horse contact was required to get successful performance and obtain high scores. Modified deterministic model showed that round-off entrance and takeoff angles and resultant velocity of the center of mass (CM) during the roundoff phase were the starting variables affecting performance in the following kinematics. Knee angle at landing, a highly influential variable on the obtained point, was only determined by judges' decision without significant correlative relationship with previous kinematic variables. Conclusion: The obtained scores highly depended on kinematic variables of post-flight and horse contact phases that were affected by those from the previous phases including round-off postures and resultant velocity of the body center of mass.

Kinematic Comparisons of the Tsukahara Vault between a Top-level Athlete and Sublevel Collegiate Athletes

  • Park, Cheol-Hee;Kim, Young-Kwan;Back, Chang-Yei
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • Objective: The purpose of this study was to investigate kinematic comparisons of Tsukahara vault in gymnastics between a top-level athlete and sublevel collegiate athletes in order to obtain information on key biomechanical points for successful Tsukahara vaults. Methods: An Olympic gold medalist (height, 160 cm; weight, 52 kg; age, 25 years) and five sublevel collegiate gymnasts (height, $168.2{\pm}3.4cm$; weight, $59.6{\pm}3.1kg$; age, $23.2{\pm}1.6years$) participated in this study. They repeatedly performed Tsukahara vaults including one somersault. Fourteen motion-capturing cameras were used to collect the trajectories of 26 body markers during Tsukahara vaults. Event time, displacement and velocity of the center of mass, joint angles, the distance between the two hands on the horse, and averaged horizontal and vertical impact forces were calculated and compared. Results: The top-level athlete showed a larger range of motion (ROM) of the hip and knee joints compared to sublevel collegiate athletes during board contact. During horse contact, the top-level athlete had a narrow distance between the two hands with extended elbows and shoulders in order to produce a strong blocking force from the horse with a shorter contact time. At the moment of horse take-off, reactive hip extension of the top-level athlete enhanced propulsive take-off velocity and hip posture during post-flight phase. Conclusion: Even though a high velocity of the center of mass is important, the posture and interactive action during horse contact is crucial to post-flight performance and the advanced performance of Tsukahara vaults.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.