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Abstract  Muscle-based by-products are often undervalued although commonly reported 
having a high amount of natural bioactive peptides. In this study, elastin was isolated 
from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. 
Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on 
three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azino-
bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. 
The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase 
High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical 
activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 
0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The 
sequential identification of the peptide was done by matrix-assisted laser desorption/ 
ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of 
the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic 
amino acids (Val and Pro) in the peptide sequences could potentially contribute to the 
high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and 
ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative 
potential from poultry skin specifically from elastin is evident and can be explored to be 
used in many applications such as health and pharmaceutical purposes. 
  
Keywords  antioxidant peptides, elastin, enzymatic hydrolysis, poultry skin 

Introduction 

Biologically active peptides are oligopeptides that can exert biological activities 

beyond their expected nutritional values that are proven beneficial to humans due to its 

health-promoting properties (Erdmann et al., 2008). These biologically active peptides 

–made up of sequences of amino acids encoded in the parent protein molecules – 

remain inactive until released via enzymatic hydrolysis by peptidases during food 
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processing and/or during gastrointestinal digestion. An example of a parent protein molecule with high biological value is 

elastin (Hattori et al., 1998). Besides the apparent nutritional value of its amino acids, the protein elastin itself has been a 

candidate for an active source of value-added product due to its functional properties such as antihypertensive, antimicrobial, 

antioxidative and antiaging (Agrawal et al., 2016). Elastin is the insoluble elastic fibrous protein which forms the framework 

that holds the connective tissues in animals (Antonicelli et al., 2007). An elastin core is surrounded by layers of microfibrils 

forming elastic fibers which provides elasticity and resilience of connective tissues such as blood vessels, lungs, aorta, and 

skin, which are essential for human health and development (Levillain et al., 2016). Apart from the manifold components, the 

elastic fibers are also maintained by highly complex molecular activities firmly controlled development, multiple stages of 

assembly, distinct biochemistry. However, the complexity is being unraveled and understood through studies of mouse 

models (Kielty et al., 2002). Elastin has been investigated in fields of biomedical and tissue engineering, molecular therapy, 

and even cosmetics (Ganceviciene et al., 2012; Lescan et al., 2018; Yeo et al., 2015). As such, elastin is involved in multiple 

levels of studies and analysis, ranging from topical applications to mRNA-synthesis, thus creating a demand for elastin in 

various forms. Commercially, elastin is distributed in powder form and of animal origin such as bovine and porcine. The 

protein accumulates in the animal parts postnatally, making the extraction more intricate, hence the final product expensive 

(Mecham, 2008). So, finding cheaper and easier alternative with high throughput is a major concern for elastin extraction. 

 Generally, highly meat productive birds or poultry breeds are called broiler poultry. Broilers are young chicken (Gallus 

gallus domesticus) of either sex of six to eight weeks of age. There are studies suggesting the potential of functional protein 

extraction from by-products of poultry industry (Fauzi et al., 2016; Mohammad et al., 2014; Munasinghe et al., 2014). The 

study suggests that collagen – another example of parent protein molecule – could be extracted from chicken skins and bones, 

which then can be utilized in various fields such as pharmaceuticals, biomedicine and food. As collagen shares similar 

characteristics with elastin, it is worth investigating the potential of chicken skin for elastin extraction (Mecham, 2008; 

Munasinghe et al., 2014).  

Still, there is minimal information on the extraction of elastin from chicken skin. Exploring this prospect would improve 

by-products management and make elastin more accessible. Also, elastin from chicken skin could be an alternative to 

conventional elastin as essential properties such as antihypertensive was present and have been investigated earlier (Yusop et 

al., 2016). 

Antioxidants protect human health against ROS (reactive oxygen species) and can increase the stability of food lipids 

(Martinez-Maqueda et al., 2012; Nazeer and Deeptha, 2013). It is found that certain bioactive peptides do indeed have 

antioxidative properties and can be used as a natural substitute to synthetic antioxidants to improve health (Ryan et al., 2011). 

Endogenous antioxidants that are mainly enzymes – catalase, superoxide dismutase and glutathione peroxidase – must be able 

to control the free radicals to protect the cellular environment against oxidative stress. The biological actions of proteins can 

be increased by using enzymatic hydrolysis; resulting in the targeted peptides or fractions being more bioactive than the 

others (Babji et al., 2018). Elastase is the enzyme found to be able to break down elastin, potentially activating the peptides 

that possess antioxidant properties (Antonicelli et al., 2007).  

The objective of this study was to isolate elastin from broiler hen skin. Furthermore, to get access to its bioavailability, its 

hydrolysate was produced by incorporating enzymatic hydrolysis using Elastase. Ultrafiltration and gel filtration 

chromatography were used preceding reversed phase high performance liquid chromatography (RP-HPLC) to further purify 

the antioxidative peptides. The sequential analysis of the peptides was also carried out through MALDI-TOF-TOF-MS/MS. 

For ease of reference, the names of the samples analyzed were listed in Table 1.  
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Materials and Methods 

Broiler's skin was purchased consistently from a supplier in a local market in Bangi, Malaysia. The skins were kept in the 

freezer at –18℃ and thawed approximately 1 h before further use. 

 

Extraction of the protein elastin 
Elastin extraction from broiler was done based on the modification of Lansing method from Lansing et al. (1952) and 

Nadalian et al. (2015). Broiler's skins were suspended in 1 M NaCl. The solution was put in a cold room with constant 

stirring for 24 h. Then, the homogenate was centrifuged (5804R, Eppendorf, Hamburg, Germany) at 13,000×g for 20 min. 

Afterwards, the pellet was washed with distilled water and defatted with acetone for 1 h. The treated sample then was 

suspended in 0.1 M NaOH and heated for 15 min in a boiling water-bath with constant shaking. After cooling and 

centrifugation, the residue was extracted again for 45 min in 0.1 M NaOH at 100℃. The residues of NaOH-insoluble material 

were then washed several times in water and lyophilized. The sample was freeze dried by using bench top freeze dryer 

(Labconco, Kansas City, MO, USA) at temperature –80℃ and vacuum pressure of 4.5 Pa. Next, the powder obtained was 

immersed in oxalic acid, relative to the insoluble elastin weight, at 100℃ for 40 min. The residue of insoluble elastin re-

submersed for solubilizing step as water-soluble elastin.  

 

Enzymatic hydrolysis of elastin proteins 
Elastin powder was hydrolyzed by Elastase (Sigma-Aldrich, St Loius, MO, USA) at optimal conditions of combined pH 

(pH 8.5) and temperature (37℃). The enzyme was added to the elastin powder with the ratio of 100:1 (w/w). The freeze-

dried elastin was grounded into powder, then suspended in deionized water with a ratio of 1:100 (w/v), adjusted to pH 8.5 

with 0.1 M HCI and temperature of 37℃. Lastly, all the hydrolysates were heated at 95℃ for 5 min for enzyme inactivation, 

before being centrifuged (3,000 g, 4℃, 15 min; 5804R, Eppendorf) to separate soluble hydrolysates from any non-soluble 

materials. The supernatants were lyophilized into powders, which then stored at –18℃. 

 
Table 1. Summary names (abbreviations) of the samples analyzed

Abbreviation Sample type 

EBH Elastin-based hydrolysate 

EBH III Ultrafiltrated hydrolyzed elastin with molecular weight less than 3 kDa 

EB-I First fraction of gel-filtrated hydrolyzed elastin 

EB-II Second fraction of gel-filtrated hydrolyzed elastin 

EB-III Third fraction of gel-filtrated hydrolyzed elastin 

EB-IV Fourth fraction of gel-filtrated hydrolyzed elastin 

UEB Non-hydrolyzed Elastin extracted from broiler hen skin 

EB-II1 First fraction from second fraction of gel-filtrated hydrolyzed elastin 

EB-II2 Second fraction from second fraction of gel-filtrated hydrolyzed elastin 

EB-II3 Third fraction from second fraction of gel-filtrated hydrolyzed elastin 

EB-II4 Fourth fraction from second fraction of gel-filtrated hydrolyzed elastin 

EBH, elastin-based hydrolysate. 
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Determination of amino acid composition  
Determination of amino acid composition was done based on the method from Alaiz et al. (1992) with some modification. 

Broiler skin was subjected to acid hydrolysis, performic acid and alkaline hydrolysis using water AccQ.Tag Amino Acid 

Analyzer (Waters, Dublin, Ireland). Hydrolysis of samples began by adding 5 mL of 6 M HCl at 110℃ for 24 h. Then, α-

aminobutyric acid was added and filtered through 0.2 m cellulose acetate membrane (Whatman No. 1). Derivatization of 

amino acids was done for 10 min at 55℃. The amino acids were then run at 37℃ with a flow rate of 1 mL/min using C18 

AccQ-Tag Amino Acid Analysis Column (150×3.9 mm; Waters, Milford, MA, USA). For amino acid quantification, 

measurement of the absorbance was done at 248 nm, while the associated fluorescence detector was measured at excitation 

and emission of 250 nm and 395 nm respectively. Tryptophan level was quantified by alkaline hydrolysis. 
 

2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging activity 
Determination of free radicals scavenging activity of elastin from broiler hydrolysate (EBH) was done based on the method 

from Brand-Williams et al. (1995) with some modification. Elastin powder was dissolved in distilled water. 2 mL of 0.2 mM 

2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) was added to 100 µL of sample solutions and mixed rigorously. After 

incubation at 0.5, 5, and 24 h, the absorbance was measured at 517 nm using a microplate reader (Biotek 259037), with 

distilled water as a control. DPPH scavenging activity was measured as the equation: 
   DPPH scavenging effect (%) = 𝐴  control − 𝐴  sample𝐴  control  × 100 

 

IC50 values (the concentrations of the test compounds required to reduce the produced hydroxyl radical to one-half) were 

calculated. 
 

2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity  
Determination of the 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals scavenging activity was 

done based on the method from Re et al. (1999). ABTS solution (7.4 mM) was prepared in 100 mM Phosphate Buffered 

Saline (PBS) at pH 7.4 with 0.15 M NaCl and oxidized using 2.6 mM of potassium persulfate (K2S2O8) for 12 h in the dark. 

The ABTS was then diluted to 734 nm absorbance with ethanol. 50 μL of the sample was mixed with 950 µL of the diluted 

ABTS, before being shaken rigorously for 30 s and held in a dark environment for 10 min. 50 μL of distilled water was used 

instead of the sample for control. Absorbance was measured at 734 nm. The percentage inhibition of ABTS.+ to ABTS was 

calculated using the following equation:  
   ABTS scavenging activity (%) = 𝐴  control − 𝐴  sample𝐴  control  × 100 

 

IC50 values (the concentrations of the test compounds required to reduce the produced hydroxyl radical to one-half) were 

calculated. 

 

Metal chelating activity 
Determination of Fe2+ chelating activity was done based on the method from Decker and Welch (1990) with some 
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modification. 2 mL reaction composition made up of 200 μL of the sample, 50 μL FeCl2 (2 mM), and 1.75 mL deionized 

water was shaken and left at room temperature for 5 min to stand. 50 μL ferrozine (5 mM in methanol) was then added, 

mixed, left standing for another 5 min. The Fe2+ ferrozine complex was read through absorbance of 562 nm, with the positive 

control being EDTA. The Fe2+ chelating activity of the extract was measured as the equation:  

   Chelating activity (%) = 𝐴 − 𝐴   𝐴  × 100 

 

Where A0 was the absorbance of the control (without sample) and A1 was the absorbance of the sample. IC50 values were 

calculated. 

 

Purification of antioxidant peptides  

Ultrafiltration 
The hydrolysate solutions of elastin were separated into large and low molecular weight fractions by ultrafiltration at 4℃ 

using 10 kDa Molecular Weight Cut-Off (MWCO) membrane (Vivaflow 200) (Sartorius, Göttingen, Germany), followed by 

a 3 kDa MWCO (Vivaflow 50) membrane. The hydrolysates were divided into 3 fractions. Fractions were referred to as the 

less than 10 kDa ultra-filtrated (10 kDa UF), between 3 to 10 kDa ultra-filtrated (3–10 kDa UF) and less than 3 kDa ultra-

filtrated (3 kDa UF) hydrolysates, respectively. All fractions were freeze-dried and stored at –18℃ until further use.  

 

Size exclusion chromatography (SEC)/gel-filtration chromatography  
After ultrafiltration, a gel filtration chromatography column, Hiprep 26/60 sephacryl S-100HR (26×600 mm) (GE Healthcare, 

Buckinghamshire, UK) was used to further purify fractions with the highest ABTS radicals scavenging activity. Fractions of 

250 mg sample were dissolved in 2 mL sodium phosphate buffer (10 mM, pH 7.2) prior to column loading and elution with 

sodium phosphate buffer (10 mM, pH 7.2) at flow rate 1.5 mL/min (You et al., 2010). 5 mL of the eluted fractions were 

collected into several fractions based on the peaks observed by absorbance at 280 nm and freeze-dried. Each fraction was 

tested for ABTS radical scavenging activity assay to determine antioxidants activity.  

 

Reversed-phased high-performance liquid chromatography (RP-HPLC) 
Fractions from gel-filtration chromatography with the highest antioxidant activity were further separated using RP-HPLC 

(Waters, Milford, MA, USA). 5 mg of the peptide fractions were dissolved in 2 mL of sodium phosphate buffer (10 mM, pH 

7.2) before being filtered with a 0.22 μm filter. 200 μL of the sample was then loaded onto XBridge BEH130 Prep C18 

(10×250 mm, 5 μm) (Waters, Milford, MA, USA). The solvents involved are; solvent A, 0.1% (v/v) trifluoroacetic acid 

(TFA) in deionized water; solvent B, 0.1% (v/v) TFA in 100% (v/v) acetonitrile solution. The flow rate was 4.73 mg/min and 

the UV absorbance of the eluents was measured at 214 nm. The samples are then put into a centrifugal concentrator at 380×g 

for 3 h, which are then used for ABTS radical scavenging activity.  

 

Identification of peptides by MALDI-TOF/TOF-MS  
The trypsin-digestion and peptides extraction of the targeted fractions was done based on several studies (Bringans et al., 

2008; Garg et al., 2013; Sharma et al., 2007). Analysis of peptides was done by MALDI TOF/TOF (matrix-assisted laser 
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desorption/ionization time-of-flight) mass spectrometer. This method is directly derived from Garg et al. (2013), as the 

method is deemed the most suitable for this experiment. The full, detailed approach could be obtained from the study. This 

method resulted in the recognition of the peptide sequences based on the matching identity ‘protein spots’ with the highest 

ion score. 

 

Statistical analysis 
All analyses were directed in triplicate. A one-way analysis of variance (ANOVA) was implemented, and the mean 

comparisons were analyzed conferring to Tukey range test at significant level 95% (p<0.05). The statistical analyses were 

completed by using SPSS package (SPSS 23.0 for windows, SPSS IBM, Chicago, IL, USA). 

 

Results and Discussion 

Antioxidant activities of elastin hydrolysates  
The hydrolysates were measured for antioxidant activities through DPPH, ABTS and metal-chelating activity assays. It 

was evident that the elastin hydrolysates possess antioxidative potentials, with ABTS value reflects the radicals scavenging 

activity (IC50 of 1.10±0.08 mg/mL), DPPH (2.80±0.37 mg/mL) and metal chelating activity (1.21±0.09 mg/mL) as shown in 

Table 2. Antioxidant properties of food protein hydrolysates are found to be influenced by their amino acid composition. A 

high value of DPPH could be correlated to a high amount of hydrophobic peptide fraction of the peptides involved, especially 

the ones derived from natural protein sources (Li et al., 2008; Pownall et al., 2010). A similar point was made in a study of 

rapeseed peptides, where the DPPH radical scavenging activities of the peptides are found to have a direct correlation with 

hydrophobicity (Zhang et al., 2008). In addition, the peptides could serve as food preservatives by protecting food lipids from 

metal ion-dependent oxidative damage. Side chains of amino acids with carboxyl and amino groups could potentially be 

essential in chelating metal ions (Saiga et al., 2003). 

 

Purification of antioxidant peptides 

Ultrafiltration  
Bioactivity of protein hydrolysates could be affected by the molecular weights of the peptides (Mohan et al., 2016). Table 

3 outlines the ABTS radical scavenging activity and the IC50 value of EBH of the three fractions with different molecular 

weights. Significant differences in IC50 values were observed in all membrane cut-off MW sizes (p<0.05) with the lowest IC50 

showed by EBH III fraction (<3 kDa) (0.66 mg/mL). It has been described that temperature treatment through hydrolysis surges 

liability of peptide bonds to the elastase and consequently releasing significant antioxidant peptides (Cudennec et al., 2016). The 

 
Table 2. Antioxidant activity of elastin hydrolysates from broiler skin 

Analysis IC50 (mg/mL) Antioxidative activity (%) 

DPPH radical-scavenging activity 2.80±0.37 55.60±2.14 

ABTS radical-scavenging activity 1.10±0.08 69.21±1.63 

Metal chelating activity 1.21±0.09 65.32±1.48 

All values are mean±SD of three replicates (n=3). 
DPPH, 2,2-diphenyl-1-picryl-hydrazyl-hydrate; ABTS, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid). 
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results are in line with a study confirming that the sanitized peptide fraction of fish proteins containing molecular weight less 

than 1,000 Da has the strongest antioxidant activity compared to other hydrolysates fractions (Centenaro et al., 2014).  

 

Gel-filtration chromatography/size exclusion chromatography (SEC) 
Gel filtration is a method that separates substances based on differences in molecular dimensions. EBH III fraction (<3 

kDa) from ultrafiltration which showed the highest ABTS radical scavenging activity was separated through gel filtration 

chromatography. Fig. 1A shows the ABTS radical scavenging activity (IC50) and gel filtration chromatography elution profile 

of the EBH III fraction. It is found that EBH III fraction was separated into four fractions (EBI-EBIV), where EB-II fraction  

 

Table 3. ABTS radical scavenging activity and IC50 values of ultrafiltrated EBH hydrolysates 

Membrane MWCO (kDa) ABTS scavenging activity (%) IC50 value (mg/mL) 

<10 UF 50.36±0.38c 0.96±0.03a 

3–10 UF 52.84±0.38b 0.82±0.02b 

<3 UF 55.58±0.38a 0.66±0.01c 

All values are mean±SD of three replicates (n=3). 
ABTS radical scavenging effects were tested at a concentration of 1 mg/mL. 
a–c Means in the same column with different letters are significantly different (p<0.05). 
EBH, elastin-based hydrolysate; MWCO, kDa molecular weight cut-off; ABTS, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid). 

Fig. 1. Data obtained to indicate the antioxidant profiles of elastin. (A) ABTS radical scavenging activity (IC50) and gel filtration 
chromatography elution profiles of EBH III. (B) ABTS radical scavenging activity (IC50) and the elution profile of RP-HPLC of EB-II. ABTS, 2,2’-
azino-bis (3-ethylbenzothiazoline-6-sulphonic acid); EBH, elastin-based hydrolysate; RP-HPLC, high performance liquid chromatography. 
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exhibits the strongest ABTS radical trapping activity with the lowest IC50 values (0.42 mg/mL) compared to other fractions 

(p<0.05). 

 
Amino acid composition of fractions from ultrafiltration and gel filtration 
The amino acid composition of non-hydrolysed elastin (UEB) and fractions obtained from ultrafiltration (EBH III) and gel 

filtration chromatography (EB-II) are summarized in Table 4. The main amino acids of elastin (EBH III) fraction and potent 

fraction EB-II are Gly, Glu, Ala, and Pro where the highest was showed by Glycine content. The Glycine in EBH III, EB-II 

and UEB fractions are 20.64%, 19.63%, and 18.36%, respectively (p<0.05). While it is unknown what are the contents found 

in this stage, there are assumptions that could be done based on studies that found out that elastin extracts from broiler consist 

of amino acids of two main types; the basics, and the radical-scavenging. The free radical-scavenging amino acids (Glu, Cys, 

Met, Tyr, and Lys) are found in elastin (Cao et al., 2009; Chen et al., 1996). From the results, it is found that these amino 

acids could increase the antioxidant activity of the corresponding peptides; UEB=38.66%, EBH III=37.33% and EB-

II=41.98%, suggesting that the hydrophobic amino acids found are indeed the radical-scavenging types. 

Observation of antioxidant properties in amino acids is not necessarily new (Chen et al., 1996). Amino acids such as Met, 

Lys, Tyr, His, and Trp has been found to show antioxidant properties in safflower oil (Riisom et al., 1980). There are reports 

 
Table 4. Amino acid composition (%) of non-hydrolysed elastin and its fractions obtained from ultrafiltration and gel filtration

AA UEB (%) EBH III (%) EB-II (%) 

Asp 7.35±0.04b 9.86±0.01a 6.99±0.01c 

Ser 3.01±0.12a 2.85±0.06b 2.78±0.01b 

Gly 18.36±0.44c 20.64±0.01a 19.63±0.01b 

Glu 11.28±0.2b 9.86±0.01c 12.31±0.01a 

His 1.6±0.03b 1.58±0.01b 1.86±0.01a 

Arg 7.89±0.27a 6.67±0.01c 7.07±0.01b 

Thr 1.56±0.04a 1.13±0.01b 1.35±0.01b 

Ala 8.13±0.08c 8.41±0.01b 8.29±0.01b 

Pro 10.84±0.12a 11.38±0.07b 10.52±0.01b 

Tyr 1.65±0.03b 1.7±0.01a 4.92±0.01a 

Val 2.99±0.07a 2.57±0.01a 2.4±0.01a 

Met 1.72±0.11a 1.73±0.01a 0.89±0.01b 

Lys 4.08±0.27a 4.3±0.01a 4.15±0.01a 

Ile 1.72±0.11c 1.98±0.01a 1.82±0.01b 

Leu 4.24±0.04a 3.46±0.01b 3.35±0.05b 

Phe 0.24±0.16c 1.51±0.01b 2.7±0.01a 

Cys 0.14±0.1a 0.11±0.01a 0.2±0.01a 

Trp 0.14±0.1a 0.11±0.01a 0.2±0.01a 

Hyp 10.4±0.27a 7.87±0.01b 5.68±0.01c 

All values are mean±SD of three replicates (n=3). 
Hydrophobic amino acids (Gly, Ala, Val, Leu, Ile, Pro, Phe, Cys, Trp, and Met). 
a–c Mean in the same row without a common superscript letter differ significantly (p<0.05). 
AA, amino acid; UEB, non-hydrolysed elastin; EBH, elastin-based hydrolysate. 
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suggesting aromatic amino acids (Phe, His, Tyr, and Trp) also portray antioxidative property – converting radicals into stable 

molecules – while simultaneously maintaining own stability due to their resonance structure. In other words, aromatic amino 

acids have better radical-scavenging properties compared to other amino acids (Rajapakse et al., 2005; Sarmadi and Ismail, 

2010). 

 

Reversed-phased high performance liquid chromatography (RP-HPLC) 
The fractions of EB-II from gel filtration with the highest radical scavenging activity were separated by RP-HPLC. The 

sample solution containing differences in molecular polarity form the basis of RP-HPLC, where the antioxidant peptide of 

EB-II fraction of EBH was separated and thus, identified. Fig. 1B portrays ABTS radical scavenging activity (IC50) and the 

elution profile of RP-HPLC for the EB-II fraction that generates four fractions (EB-II1-EB-II4). The EB-II4 has the elution 

time of 11:94 min and has been verified with the highest ABTS radical scavenging activity, with IC50 of 0.12 mg/mL 

(p<0.05).  

The timing in the hydrophobic chromatography column is essential in determining antioxidative peptides based on 

hydrophobic properties. Longer elution time means the sample is more hydrophobic, which correlates with antioxidative 

activity. The time taken for peptides in EBH reflects the antioxidative activity in the peptide sequences, which is further 

supported by the ABTS assay. Another study shows a similar idea of hydrophobic chromatography column where loach 

peptides with a higher amount of hydrophobic amino acids have longer retention time (Rajapakse et al., 2005). 

 

Identification of antioxidative peptides by MALDI-TOF/TOF-MS 
The EB-II4 fraction which has the highest antioxidant activity was analyzed by matrix-assisted laser desorption/ionization 

time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for identification of amino acid sequence. Fig. 2 

shows the mass spectra of the antioxidant peptide from elastin hydrolysate (EBH). The amino acid sequence of the 

antioxidant peptides from EBH, as shown in Table 5 is characterized by the Ludwig NR databases. The following peptides were 

found from the results of mass spectral analysis: Gly-Ala-His-Thr-Gly-Pro-Arg-Lys-Pro-Lys-Pro-Arg (GAHTGPRKPKPR), of 

the parent protein trA0A021W2G6AZ78_21380 RNA helicase; peptide Gly- Pro-Gly-Phe-Asp-Val-Arg (GPGFDVR), of the 

parent protein H1W5B7 in parent protein, trH1W5B7CH063_00691 AMP-binding enzyme and peptide Ala-Asp-Ala-Ser-Val-

Leu-Pro-Lye (ADASVLPK), of the parent protein trA0A011VSV8|RASY3_15265 Thiamine-phosphate pyrophosphorylase. It 

was evident that the amino acids Proline (P) and Valine (V) were present in all antioxidant peptides from the EBH. The 

molecular weight of antioxidant peptides of EBH is ranging from 799.38–1,447.82 Da (Table 5). The molecular weight of the 

fractions decreased after purification; ultrafiltration (<3 kDa)>gel filtration (0.5–3 kDa)>RP-HPLC (<1 kDa). These results 

confirmed that functional antioxidative peptides are highly affected by molecular structure and molecular mass, which is also 

the case in other studies involving other sources of peptides from marine and casein (Jeon et al., 1999; Suetsuna and Chen, 

2002). The results in this study also show that antioxidative peptides of EBH have between 8-13 amino acid residues, which 

is supported by Pihlanto-Leppala (2000), where bioactive peptides are found to have typically between 2–20 amino acid 

residues. 

Overall, peptides of elastin extracted from EBH that have antioxidant activity contained relatively lower molecular weights 

and relatively hydrophobic amino acids, namely Glycine (G), Alanine (A), valine (V), and Phenylalanine (F). The results 

demonstrate the antioxidant capacity of elastin extracted from broiler, where the antioxidant peptides contain amino acid 

sequences involving aspartic acid, hydrophobic amino acids (valine and alanine), and hydrophilic amino acids (histidine and  
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Fig. 2. The mass spectra (MS/MS) of the antioxidant peptides from EB-II4 fraction. (A) The peptide sequence of GAHTGPRKPFKPR with a 
corresponding observed the mass of 1,448.69 Da. (B) The peptide sequence of GMPGFDVR with a corresponding observed the mass of 
878.42 Da. (C) The peptide sequence of ADASVLPK with a corresponding observed mass of 800.39 Da. Proline (P) and valine (V), amino
acids were present in all antioxidant peptides from the EBH. EBH, elastin-based hydrolysate. 

Table 5. The amino acid sequence of antioxidant peptides obtained from RP-HPLC (EB-II4) that has the highest antioxidative activity 
which is characterized by the Ludwig NR database 

Parent protein and accession number Sequence Observed mass (Da) Ions score Mr (calc) 

trA0A021W2G6AZ78_21380 RNA helicase GAHTGPRKPFKPR 1,448.6958 36 1,447.8160 

H1W5B7 in parent protein, 
trH1W5B7CH063_00691 AMP-binding enzyme 

GMPGFDVR 
 

878.4228 
 

18 
 

877.4116 
 

trA0A011VSV8|RASY3_15265 Thiamine-
phosphate pyrophosphorylase 

ADASVLPK 
 

800.3921 
 

 5 
 

799.4440 
 

RP-HPLC, high performance liquid chromatography. 
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proline). Furthermore, the antioxidant property of EBH was reflected by the high ABTS radical scavenging activity thus 

proving the fact that free radical scavenging is the main antioxidant mechanism of EBH antioxidant peptides. The evidence 

that elastin hydrolysates from broiler (EBH) can be a novel source of antioxidants is also supported by a study on elastin 

isolated from neck ligaments (Rajapakse et al., 2005). These pepsin-solubilized and acid-solubilized elastin peptides 

possessed a low molecular weight and also confirmed having high antioxidant activity (Hattori et al., 1998). 

 

Conclusion 

In this study, elastin hydrolysate has been successfully extracted from poultry skin by using the enzyme elastase. 

Antioxidant peptides were separated using ultrafiltration, gel filtration chromatography and high-performance liquid 

chromatography (RP-HPLC). It was evident that the antioxidative activities were found in all the fractions. Further studies on 

elastin hydrolysate should include the use of a cell culture system to examine antioxidant properties of target peptides in vivo. 

The antioxidative protein hydrolysates obtained from the present study could potentially be a stepping stone on future animal 

and clinical studies. 
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