• 제목/요약/키워드: Flight Phase

Search Result 328, Processing Time 0.034 seconds

Comparisons of Isolation Performances for the SMA Mesh Washer Isolator with the Variation of Pre-compressed Displacement (초기압축변위에 따른 형상기억합금 메쉬 와셔 절연계의 절연 성능 비교)

  • Youn, Se-Hyun;Jeong, Ho-Kyeong;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • Launch vehicles and satellites experience severe vibration and pyroshock during the flight phase. These severe dynamic loading could result in the malfunction of electric devices which equipped in the launch vehicle and satellite. In this paper, mesh washer isolators are applied to attenuate these severe shock and vibration and isolation performances are enhanced by applying pseudoelasitic SMA wire material. Through random vibration and ground pyroshock tests, outstanding isolation performances are studied. Especially, comparison of isolation performances due to the change of pre-compressive displacement of mesh washer itself are suggested and applicablity to the adaptive vibration control are confirmed.

The Micro Structure Characteristics of Coating Layer on SM490B with HVOF Coating (HVOF용사 코팅한 SM490B 코팅층의 미시조직 특성)

  • Nam Ki-Soo;Cho Won-ik;Yoon Myung-Jin;Kim Byung-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • High velocity oxy-fuel thermally sprayed coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks. The hard WC phase in the coating resists to the wear while the soft metallic Co increases the adhesive and cohesive bonding properties. The coating properties deposited by the HVOF process are greatly dependent on the feedstock materials and processing parameters. The effects of the feedstock material and process coating parameters including the in-flight particle parameters and resultant coating microstructures were observed in this paper.

A Guidance Law with a Switching Logic for Maintaining Seeker's Lock-on for Stationary Targets

  • Sang, Dae-Kyu;Ryoo, Chang-Kyung;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Modem anti-ship missiles employ complex and sophisticated guidance laws to hit the target and enhance their survivability by executing additional maneuvers. However, such maneuvers may cause the target to move out of the missile seeker's Field-Of-View (FOV). Maintaining seeker lock-on during an engagement is a critical factor for missile guidance. In this paper, a guidance law switching logic that maintains seeker lock-on and a simple guidance law that keeps the target look angle of the seeker constant is proposed. The proposed method can be used for the terminal homing phase, and can be switched from any kind of guidance laws if a proper switching condition is satisfied. The minimum and maximum flight time calculation method in consideration of the missile maneuver limit and the FOV of the seeker is also provided.

A Study on the fSDF Phase Filter for a Distortion Invariant Optical pattern Recognition (왜곡불변 광패턴인식을 위한 fSDF위상필터에 관한 연구)

  • 전석희;은재정;박완현;박한규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.137-142
    • /
    • 1990
  • A theory for the synthesis of a SDF including the filter modulation is suggested. In the filter synthesis, the iteration equation was used to iterate trial solution vectors. A computer simulation of the fSDF method using threshold binary images of the flight objects over a range of aspect angles was performed for POF and BPOF. The constructed fSDF filters are capable of obtaining the specified peak correlation response within a 1.7%-4.0% error range, after several iterations. However, the conventional pSDF/POFs, BPOFs are not. The results indicate POFs and BPOs can be made to perform well for distortion invariant optical pattern recognition using the fSDF method.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle (위성발사체의 궤적최적화와 최적 유도 알고리듬 설계)

  • Roh, Woong-Rae;Kim, Yodan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

A Study on Reliability Improvement of RALT for KUH through Fault Analysis (한국형기동헬기 레이더고도계의 결함분석을 통한 신뢰성 향상에 관한 연구)

  • Jun, Byung Kyu;Kim, Young Mok;Chang, Joong Jin;Kim, Chang Young;Hwang, Gil Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • In this paper, it is introduced characteristics of FMCW-type Radar Altimeter for KUH, and its defects occurred during ground/flight test in initial product phase. In addition, it is also described 'data/control flow model' based fault analysis results of S/W and processes of verifying improvement design through flight test as well as aircraft system integration test called MEP SIL. As a result of design improvement and verification, it is validated that settling the defects and improving not only safety but also capability of the KUH.

Thermal Decomposition of High Speed Aircraft Fuel in Supercritical Phase (고속비행체 연료의 초임계조건에서 열분해반응 연구)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • Researches on hypersonic aircraft technologies have been carried out to increase flight speeds. However, increase in flight speeds causes heat loads that could lead structural change of aircraft's component. Researches on cooling technologies using endothermic fuels are progressing in the USA, France and Russia to treat the heat loads. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. In this study, methylcyclohexane, n-octane, and n-dodecane were selected as model endothermic fuels and experiments in endothermic properties were implemented. Experimental conditions were supercritical condition of each model fuels in which actual endothermic fuels were exposed. The object of this study is to identify endothermic properties of the model endothermic fuels and to predict endothermic properties of actual fuels such as kerosene fuels.