Thermal Decomposition of High Speed Aircraft Fuel in Supercritical Phase

고속비행체 연료의 초임계조건에서 열분해반응 연구

  • 김중연 (고려대학교 화공생명공학과) ;
  • 박선희 (고려대학교 화공생명공학과) ;
  • 전병희 (고려대학교 화공생명공학과) ;
  • 김성현 (고려대학교 화공생명공학과) ;
  • 정병훈 (국방과학연구소 1기술연구본부5부) ;
  • 한정식 (국방과학연구소 1기술연구본부5부)
  • Received : 2010.12.03
  • Accepted : 2011.08.19
  • Published : 2011.10.30

Abstract

Researches on hypersonic aircraft technologies have been carried out to increase flight speeds. However, increase in flight speeds causes heat loads that could lead structural change of aircraft's component. Researches on cooling technologies using endothermic fuels are progressing in the USA, France and Russia to treat the heat loads. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. In this study, methylcyclohexane, n-octane, and n-dodecane were selected as model endothermic fuels and experiments in endothermic properties were implemented. Experimental conditions were supercritical condition of each model fuels in which actual endothermic fuels were exposed. The object of this study is to identify endothermic properties of the model endothermic fuels and to predict endothermic properties of actual fuels such as kerosene fuels.

비행체 속도를 증가시키기 위한 극초음속 항공기 기술 연구가 그동안 진행되어 왔다. 하지만 비행체의 속도증가는 비행체 구조의 변형을 유발할 수 있는 열적부하를 야기한다. 이러한 열적부하 처리를 위해 탄화수소형 흡열연료를 이용한 비행체 냉각에 대한 연구가 미국, 프랑스, 러시아 등 선진국에서 이루어지고 있다. 흡열연료(Endothermic fuels)는 열분해 또는 촉매분해와 같은 흡열반응(Endothermic reaction)을 통해 열을 흡수하는 액체 탄화수소 비행체 연료이다. 본 연구에서는 흡열연료의 모델연료로써 methylcyclohexane, n-octane, n-dodecane을 선정하여 흡열특성 연구를 진행하였다. 실험조건은 흡열연료가 사용되는 각 연료의 초임계 조건이며 온도별 분해율 분석, 열분해 생성물분석, 흡열량 계산을 수행하였다. 본 연구의 목표는 모델연료의 흡열특성을 규명함으로써 실제 비행체에 널리 사용되는 케로신 연료의 흡열특성 예측에 기여하는 것이다.

Keywords

References

  1. D. R. Sobel et al., "Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion," J. Eng. Gas. Turb. Power., Vol. 119, 1997, pp.344-351 https://doi.org/10.1115/1.2815581
  2. 김중연, 박선희, 전병희, 김성현, 정병훈, 한정식, "흡열연료를 이용한 고속비행체 냉각기술 동향," 한국추진공학회지, 제14권, 제2호, 2010, pp.71-79
  3. Y. Wang et al., "Pure Hydrogen Production by Partial Dehydrogenation of Cyclohexane and Methylcyclohexane over Nanotube-Supported Pt and Pd Catalysts," Energy & Fuels, Vol. 18, No. 5, 2004, pp.1429-1433 https://doi.org/10.1021/ef049959o
  4. A. A. Shukla et al., "Efficient Hydrogen Supply through Catalytic Dehydrogenation of Methylcyclohexane over Pt/metal Oxide Catalysts," Int. J. Hydrogen Energy, Vol. 35, No. 9, 2010, pp.4020-4026 https://doi.org/10.1016/j.ijhydene.2010.02.014
  5. J. S. Jung et al., "Catalytic Cracking of n-octane over Alkali-Treated MFI Zeolites," Appl. Catal. A., Vol. 288, No. 1-2, 2005, pp.149-157 https://doi.org/10.1016/j.apcata.2005.04.047
  6. M. Steijns et al., "Hydroisomerization and Hydrocracking. 2. Product Distributions from n-Decane and n-Dodecane," Ind. Eng. Chem. Prod. Res. Dev., Vol. 20, No. 4, 1981, pp.654-660 https://doi.org/10.1021/i300004a013
  7. J. M. Campelo et al., "Hydroconversion of n-dodecane over Pt/SAPO-11 Catalyst," Appl. Catal. A., Vol. 170, No. 1, 1998, pp.139-144 https://doi.org/10.1016/S0926-860X(98)00036-2
  8. G. Padmavathi et al., "Kinetics of n-dodecane Dehydrogenation on Promoted Platinum Catalyst," Chem. Eng. Sci., Vol. 60, No. 15, 2005, pp.4119-4129 https://doi.org/10.1016/j.ces.2005.01.039
  9. H. Huang et al., "Fuel-Cooled Thermal Management for Advanced Aeroengines," J. Eng. Gas. Turb. Power., Vol. 126, No. 2, 2004, pp.284-293 https://doi.org/10.1115/1.1689361
  10. M. Bajus et al., "Steam Cracking of Hydrocarbons. 2. Pyrolysis of Methylcyclohexane," Ind. Eng. Chem. Prod. Res. Dev., Vol. 18, No. 2, 1979, pp.135-142 https://doi.org/10.1021/i360070a012
  11. D. T. Wickham et al., "Additives to Improve Fuel Heat Sink Capacity in Air/Fuel Heat Exchangers," J. Propul. Power., Vol. 24, No. 1, 2008, pp.55-63 https://doi.org/10.2514/1.24336