• Title/Summary/Keyword: Flight Model

Search Result 1,074, Processing Time 0.025 seconds

System Identification of Quadrotor IT Convergence UAV using Batch and RLS Estimation Methods (배치추정기법과 RLS추정기법을 사용한 쿼드로터 IT융합 무인항공기 시스템식별)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • UAVs began to be actively applied to so-called 3D jobs, including the autonomous exploration, investigation, mapping, search and rescue, etc. since the mid-2000s. With this global trend, having a precise controllability of the UAV will certainly revolutionize the life of the modern human in the aspect of tremendous applications of the UAV. In the first part, a simplified dynamic model of the UAV identified using system identification techniques is compared with the previously built time-discrete linear model. In the second part, the three parameters of the dynamic model are estimated using the batch and RLS methods. Angular acceleration data of the quadrotor UAV at the hovering maneuver are analyzed and shown to be converging at all time. Also, according to the quadrotor flight data from both experiments and MATLAB simulations, the batch estimation method turns out to be more accurate than the RLS estimation method based on the comparison of final parameter values.

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.

The Efficient Clutter Simulation Method for Airborne Radars (항공기용 레이다를 위한 효율적인 클러터 모의 방법)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1123-1130
    • /
    • 2019
  • Simulation of the strong clutter occurring from the airborne radar is essential in the efficient development and performance evaluation of the aircraft radar system. If the efficient simulation of the clutter can be successful, algorithms can be proved and analyzed and also the performance evaluation is possible in the laboratory environment. Therefore, development and implementation of the airborne radar system can be achieved very economically in the effective way. However, the clutter simulation procedure is very difficult and tedious since the clutter environment changes in numerous ways as it depends on the flight path, direction of antenna beam, reflectivity of the surface, etc.. Thus, in this paper, the general Doppler spectrum model is suggested for efficient simulation of the various clutter environment. Also, it is shown that the various type of clutter in time domain can be generated easily by changing and adjustment of parameters in the general Doppler spectrum model.

Operation Availability Analysis Model Development for High Altitude Long Endurance Solar Powered UAV (고고도 장기체공 태양광 무인기의 운용 가용성 분석 모델 연구)

  • Bong, Jae-Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2022
  • High Altitude Long Endurance(HALE) solar powered UAV is the vehicle that flies for a long time as solar power energy sources. It can be used to replace satellites or provide continuous service because it can perform long-term missions at high altitudes. Due to the property of the mission, it is very important for HALE solar powered UAV to have maximum flight time. It is required for mission performance to fly at high altitudes continuously except a return for temporary maintenance. Therefore mission availability time analysis is a critical factor in the commercialization of HALE solar powered UAV. In this paper, we presented an analytic model and logic for available time analysis based on the design parameters of HALE solar powered UAV. This model can be used to analyze the possibility of applying UAV according to the UAV's mission in concept design before the UAV detail design stage.

LUAV Software Certification Method using Checklists based on DO-178C (DO-178C 기반 체크리스트를 활용한 무인동력비행장치 소프트웨어 인증 방안)

  • Ji-Hun Kwon;Dong-Min Lee;Kyung-Min Park;Eun-Hee Lee;Sauk-Hoon Im;Yong-Hun Choi;Jong-Whoa Na
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • As seen in the case of the Boeing 737 Max accident, the proportion of aircraft software is rapidly increasing. However, it is vulnerable to safety issues. In case of domestic aircraft software, to operate a Light Unmanned Aerial Vehicle (LUAV) less than an empty weight of 150 kg, safety certification is required for an Ultra-Light Vehicle (ULV). However, software certification procedure is not included. Since the use of LUAVs has increased recently, software verification is required. This paper proposed a checklist of LUAV software that could be applied to LUAV referring DO-178C, an aviation software certification standard. A case study of applying the proposed checklist to the Model-based Development-based Helicopter Flight Control Computer (FCC) project currently used by domestic and foreign advanced companies and institutions was conducted.

Analysis of UAV Photogrammetric Method for Generation of Terrain Model and Ortho Image (지형모델 및 정사영상 제작을 위한 무인항공측량 기술 분석)

  • Um, Dae Yong;Park, Joon Kyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.8
    • /
    • pp.577-584
    • /
    • 2016
  • UAV(Unmaned Aerial Vehicle), which is autonomous flight without pilots. Recently, UAV is being applied to various fields such as video recording, aerial photogrammetry. In particular, UAV is getting a lot of attention in the field of space-related information because of it's data acquisition speed and economic feasibility. But analytical study of an unmanned air-side technologies are lacking. In this study, the research of equipment for the unmanned aerial surveys and UAV technologies and trend analysis for generation of terrain model and ortho image effectively were performed. As a result, the ways to improve the utilization field of unmanned aerial surveying and processing of fixed-wing and rotary-wing unmanned aircraft. were suggested. If analytical research on generation of terrain models and ortho image will be performed, production efficiency of the geospatial information industry is expected to be significantly increased.

Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities (가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석)

  • Jaeyoung Ryu;Seong-Min Han;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.888-896
    • /
    • 2023
  • When an aircraft is landing, it is expected that the aircraft will follow a specified approach procedure and then land at the airport. However, depending on the airport situation, neighbouring aircraft or the instructions of the air traffic controller, there can be a deviation from the specified approach. Detecting aircraft approach patterns is necessary for traffic flow and flight safety, and this paper suggests clustering techniques to identify aircraft patterns in the approach segment. The Gaussian Mixture Model (GMM), one of the machine learning techniques, is used to cluster the trajectories of aircraft, and ADS-B data from aircraft landing at the Gimhae airport in 2019 are used. The aircraft trajectories are clustered on the plane, and a total of 86 approach trajectory patterns are extracted using the centroid value of each cluster. Considering the correlation between the approach procedure pattern and overshoots, the distribution of overshoots is calculated.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.

Passenger's Right to Compensation in relation to Delayed Flights - From the perspective of EU case law - (운항지연에 따른 승객의 보상청구권 - EU 및 프랑스 판례를 중심으로 -)

  • Lee, Chang-Jae
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.249-277
    • /
    • 2015
  • Regulation (EC) No 261/2004 ("Regulation") is a common rule on compensation and assistance to passengers in the event of denied boarding and of cancellation or long delay of flights. In some recent cases of European nations, passengers sued the air carrier in order to obtain monetary compensation under Article 7(1) of the Regulation. Some courts dismissed the actions on the grounds that, unlike denied boarding or cancellation of the flight, the Regulation provides no compensation in relation to delayed flights. However, Court of Justice of the European Union(CJEU) ruled that Regulation 261/2004 must be interpreted to mean that passengers whose flights are delayed have a right to compensation in cases when the loss of time is equivalent to, or is in excess of three hours - where the passengers eventually reached their final destination three hours or more later than the originally scheduled arrival time. It is true that a strict interpretation of the regulation would suggest that passengers whose flight has merely been delayed are not entitled to compensation. They should only be offered assistance in accordance with the Articles 6 and 9. Nevertheless, the Court recognized the same right to the same compensation for passengers of flights delayed by more than three hours as that explicitly provided for passengers of cancelled flights. On the one hand, the Court bases this ruling on the recitals of the Regulation, in which the legislature links the question of compensation to that of a long delay, while indicating that the Regulations seek to ensure a high level of protection for passengers regardless of whether they are denied boarding or their flight is cancelled or delayed. On the other hand, the Court interprets the relevant provisions of the Regulation in light of the general principle of equal treatment. Furthermore, the Court delivered a ruling that the loss of time inherent in a flight delay, which constitutes an inconvenience within the intention of Regulation No 261/2004 and which cannot be categorized as 'damage occasioned by delay' within the meaning of Article 19 of the Montreal Convention, cannot come within the scope of Article 29 of that convention. Consequently, under this view, the obligation under Regulation No 261/2004 intended to compensate passengers whose flights are subject to a long delay is in line with Article 29 of the Montreal Convention. Although the above interpretation of the Court can be a analogical interpretation, the progressive attitude of the Regulation and the view of Court forward to protect passengers' interest is a leading role in the area of international air passenger transportation. Hopefully, after the model of the positive support in Europe, Korea can establish a concrete rule for protecting passengers' right and interest.

A Study on the Impact of Human Factors for the Students Pilot's in ATO -With Respect to Korea Aviation Act and ICAO Human Factors Training Manual- (항공법규에 의거 지정된 조종사 양성 전문교육기관의 학생조종사에 대한 휴먼팩터 영향 연구)

  • Lee, Kang-Seok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.2
    • /
    • pp.149-179
    • /
    • 2011
  • Statistics of aviation accident in Korea show that safety level of training flights is high. However, more than 80% of aviation accidents happen owing to human factors. And because most reasons of them are concerned with pilot error, it is very important for student pilots who will transport a lot of passengers to develop the knowledge of safety and abilities of risk management for preventing accidents. In this study, in order to investigate the Human Factors which affect safety in training student pilots for flight, verified the correlationbetween experiences of accident, the differences according to the experience level of training flight and the differences between college student pilots and ordinary student pilots on the basis of human factors that composes the SHELL models. For the study, Using SPSS 17.0, conducted Correlation Analysis, Analysis of Variance(ANOVA) and t-test. To sum up the result of this study, student pilot's ability and equipment in the cockpit are the important factors for safety when pilots are training flight. Also the analysis of the differences between human factors according to the characters of student pilots' groups shows that college student pilots are affected by immanent factors and organizational cultures. So far, there haven't been any accidents which is related with human casualties when training at the ATO(Approved Training Organization). But accidents can occur at any time and anywhere. Especially the human factors which comprises most of aviation accident have a wide reach and are impossible to be eliminated, therefore, it is best to minimize them. Because ATO is the starting point to lead the aviation industry of Korea, we will have to be aware of problems and improve education/training of human factors.

  • PDF