• Title/Summary/Keyword: Flight Dynamic Model

Search Result 174, Processing Time 0.023 seconds

A Study on the Estimations of Maximum Lift Coefficients of a Light Airplane (경비행기의 최대양력계수 추정에 대한 연구)

  • Lee, Jung-Hoon;Yoo, Si-Yoong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.762-767
    • /
    • 2008
  • Estimated values for maximum lift coefficients of a light airplane, ChanGong-91, derived from an analytical method using a test database, a computational fluid dynamic method, a wind tunnel test, and a flight test are compared. The DATCOM method and VSAERO code are applied as the analytical method and the computational fluid dynamic method, respectively, in order to estimate the maximum lift coefficients of a light airplane. The wind tunnel test is conducted using a 1/14.5 scaled model installed in a closed circuit type wind tunnel. For the flight test approach, the wings-level power-off stall tests are performed to obtain the maximum lift coefficients. As a point of reference for the flight test results of the maximum lift coefficients, the differences of both estimates derived from the DATCOM method and the wind tunnel test data are smaller than those derived from VSAERO.

  • PDF

In-Flight Alignment of SDINS without Initial Heading Information (초기 기수각 정보가 필요 없는 SDINS의 운항중 정렬)

  • 홍현수;이장규;박찬국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.524-532
    • /
    • 2002
  • This paper presents a new in-flight alignment method for an SDINS under large initial heading error. To handle large heading error, a new attitude error model is introduced. The attitude errors are divided into heading error and leveling errors using a newly defined horizontal frame. Some navigation error dynamic models are derived from the attitude error model for indirect feedback filtering of the in-flight alignment system. A Kalman filter with Position measurement is designed to estimate navigation errors as the indirect feedback filter Simulation results show that the proposed in-flight alignment method reduces the heading error very quickly from more than 40deg to about 5deg so as to apply a refined navigation filter. The total alignment process including leveling mode and navigation mode in addition to the proposed one allows large initial values not only in heading error but also in leveling errors.

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

Multicopter Position Control using Singular Perturbation based Dynamic Model Inversion (특이섭동 모델역변환을 이용한 멀티콥터 위치제어 연구)

  • Choi, Hyoung Sik;Jung, Yeondeuk;Lee, Jangho;Ryu, Hyeok;Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.276-283
    • /
    • 2017
  • This paper presents position control of multicopter using nonlinear dynamic model inversion in singular perturbation. Multicopter dynamics are developed and separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. The final design is evaluated in 6-DOF simulation. The results show accurate position tracking performance.

Simplified Dynamic Modeling of Small-Scaled Rotorcraft (축소형 회전익 항공기의 간략화된 동적 모델링)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.56-64
    • /
    • 2005
  • It is prerequisite that we have to fomulate the nonlinear mathematical modeling to design the guidance and control system of rotorcraft-based unmanned aerial vehicle using a small-scaled commercial helicopter. The small-scaled helicopters are very different from the full-scale helicopters in dynamic behavior such as high rotation speed and high frequency dynamic characteristics. In this paper, the formulation of the mathematical model of the small-scaled helicopter to minimize the complexity is presented by component and source build-up approach. It is linearized at the trim condition of hovering and forward flight and analyzed the flight modes. The results of this approach have general trends but a little difference. To verify this approach, it is necessary to compare this theoretical model with experimental results by system identification using flight test as a next research topic.

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

A study of the dynamic characteristic of airship through the flight test (비행선의 비행 시험을 통한 동특성에 관한 연구)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.97-103
    • /
    • 2004
  • Nowadays, many kinds of research for airship are studying with increasing of interests of airship. But these are far from perfect. The data acquisition from the actual flight test has lots of difficulties because of the characteristics from the slow dynamic response and high sensitivity for external environment. In this paper, through the actual flight test, appropriateness of the mathematical dynamic model applied here was verified by comparing the test data with simulation data in same control conditions.

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF

Study on the Parameter Estimation for Flight Dynamic Linear Model of Light Sport Aircraft (경량항공기 선형 비행운동모델 변수 추정에 관한 연구)

  • Kim, Eung-Tai;Seong, Kie-Jeong;Cremer, Matthias;Hischier, Damian
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.21-29
    • /
    • 2010
  • The main purpose of this study is to obtain linear models for the design of automatic flight controller in order to operate the Light Sport Aircraft as unmanned air vehicle. Flight test equipments installed on the aircraft to acquire flight test data are described and maneuvers for practical speed calibration are introduced. Parameters for the linear models of lateral and longitudinal motion are estimated by the Output error method as well as trim data analysis using the flight test data. Simulated data using the estimated parameters is shown to agree well with the measurement data. Estimated parameters obtained for several flight conditions can be used to improve the aerodynamic database of the simulation program.