• Title/Summary/Keyword: Flight Data Processing System

Search Result 91, Processing Time 0.025 seconds

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

Transonic/Supersonic Nonlinear Aeroelastic Analysis of a Complete Aircraft Using High Speed Parallel Processing Technique (고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석)

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kwon, Oh-Joon;Paek, Seung-Kil;Hyun, Yong-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.46-55
    • /
    • 2002
  • A nonlinear aeroelastic analysis system in transonic and supersonic flows has been developed using high speed parallel processing technique on the network based PC-clustered machines. This paper includes the coupling of advanced numerical techniques such as computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD). The unsteady Euler solver on dynamic unstructured meshes is employed and coupled with computational aeroelastic solvers. Thus it can give very accurate engineering data in the structural and aeroelastic design of flight vehicles. To show the great potential of useful application, transonic and supersonic flutter analyses have been conducted for a complete aircraft model under developing in Korea.

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.

Development of symbol generator software (심볼 생성기용 소프트웨어 개발)

  • Park,Deok-Bae;Lee,Jae-Eok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the development and implementation for the SYMBOLGEN(SYMBOL GENerator) software. The SYMBOL-GEN software is for improving graphic processing speed and decreasing data communication load in ASC by genera ting and downloading off-line symbol file for HUD and MFD , which are the main display equipments in military aircraft. The SYMBOL-GEN is developed on PC using C++ language and MS Visual Studio 6.0 development tool. It is also designed to be modified and extended easily by introducing object-oriented software development technique.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Miniaturized Ground-Detection Sensor using a Geomagnetic Sensor for an Air-burst Munition Fuze (공중폭발탄용 신관에 적용 가능한 초소형 지자기 지면감지 센서)

  • LEE, HanJin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.97-105
    • /
    • 2017
  • An air-burst munition is limited in space, so there is a limit on the size of the fuze and the amount of ammunition. In order to increase a firepower to a target with limited ammunition, it is necessary to concentrate the firepower on the ground instead of the omnidirectional explosion after flying to the target. This paper explores the design and verification of a ground-detection sensor that detects the direction of the ground and determines the flight-distance of an air-burst munition using a single axis geomagnetic sensor. Prior to the design of the ground detection sensor, a geomagnetic sensor model mounted on the spinning air-burst munition is analyzed and a ground-detection algorithm by simplifying this model is designed. A high speed rotating device to simulate a rotation environment is designed and a geomagnetic sensor and a remote-recording system are fabricated to obtain geomagnetic data. The ground detection algorithm is verified by post-processing the acquired geomagnetic data. Taking miniaturization and low-power into consideration, the ground detection sensor is implemented with analog devices and the processor. The output signal of the ground detection sensor rotating at an arbitrary rotation speed of 200 Hz is connected to the LED (Light Emitting Diode) in the high speed rotating device and the ground detection sensor is verified using a high-speed camera.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.