• Title/Summary/Keyword: Flight Control Law

Search Result 179, Processing Time 0.029 seconds

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.

Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics (초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구)

  • Hong S. K.;Sung W. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.41-46
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were peformed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It is found that the influence of side jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

Adaptive Control Design for Missile using Neural Networks Augmentation of Existing Controller (기존제어기와 신경회로망의 혼합제어기법을 이용한 미사일 적응 제어기 설계)

  • Choi, Kwang-Chan;Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1218-1225
    • /
    • 2008
  • This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.

Development Status of Helicopter Simulator Technology (헬리콥터 시뮬레이터 기술개발현황)

  • Seo, Gang-Ho;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.446-459
    • /
    • 2019
  • The purpose of this paper is to investigate the current technical status and future prospects regarding helicopter simulators. In the introduction section, we briefly summarize the concept of the simulator and the development history of helicopter simulators. In the main section, the development status of helicopter simulation technology is first presented and the FAA/EASA certification is then introduced as a verification method for the reliability evaluation of the developed simulator technology. In addition, several issues that need to be resolved along with future development directions are discussed to improve the reliability of helicopter flight simulator.

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Guidance Synthesis to Control Impact Angle and Time

  • Shin, Hyo-Sang;Lee, Jin-Ik;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.129-136
    • /
    • 2006
  • A new guidance synthesis for anti-ship missiles to control impact angle and impact time is proposed in this paper. The flight vehicle is assumed as a 1st order lag system to consider more practical system. The proposed guidance synthesis enhances the survivability of anti-ship missiles because multiple anti-ship missiles with the proposed synthesis can hit the target simultaneously. The control input to satisfy constraints of zero miss distance and impact angle, and the feedforward bias control input to control impact time constitute the guidance law. The former is from trajectory shaping guidance, the latter is from neural network. And particle swarm optimization method is introduced to furnish reference input and output for learning in neural network. The performance of the proposed synthesis in the accuracy of impact time and angle is validated by numerical examples.

Automated Control Gain Determination Using PSO/SQP Algorithm (PSO/SQP를 이용한 제어기 이득 자동 추출)

  • Lee, Jang-Ho;Ryu, Hyeok;Min, Byoung-Moom
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • To design flight control law of an unmanned aerial vehicle, automated control gain determination program was developed. The procedure for determination of control gain was formulated as the control gains were designed from the optimal solutions of the optimization problem. PSO algorithm, which is one of the evolutionary computation method, and SQP algorithm, which is one of the nonlinear programming method, are used as optimization problem solver. Thru this technique, computation time required for finding the optimal solution is decreased to 1/5 of that of PSO algorithm and more accurate optimal solution is obtained.

  • PDF

Pixhawk mission mode flight control-law structure analysis based on Open-Source (오픈소스 기반 Pixhawk 미션모드 비행제어법칙 구조 분석)

  • Lee, Yeongho;Shin, Seungchan;Mok, Jihyun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • This paper deals with the analysis of the inner-loop algorithm of the Pixhawk which is a representative multi-copter open source. The algorithm is based on flight control-law structure. The inner-loop algorithm of the Pixhawk can be divided into a position controller and an attitude controller. The position controller generates the attitude of the multi-copter to move to the destination The position controller also generates the demand force and moment acting on each actuator. We confirm that the position controller saturates the desired acceleration and speed by using a proper relational expression. The expression can be used in order to prevent the sudden change in the attitude of a multi-copter.

A Study on the Liability of Air Carrier for Damages of the Third Parties (지상제삼자(地上第三者)의 손해(損害)에 대한 공중운송인(空中運送人)의 책임(責任)에 관한 고찰(考察))

  • Park, Heon-Mok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.1
    • /
    • pp.163-191
    • /
    • 1989
  • The accident of the midair collision, passengers' falling or goods' dropping occurs or supersonic aircraft make a sonic boom during their conveying passengers or goods to the destination. The accident in transmit damages the their parties on the surface or their properties. In these cases, the third parties who were harmed to their lives or properties have the right to claim damages against the air carrier who caused them. These matters have become one of the important things since aircraft conveyed passengers and goods. Therefore, it is a great concern to settle these matters by law. But the Safety of the present aircraft has been much increased and the aircraft have become larger in size. Its flight altitude became higher than before. So the relationship of the aircraft to the third parties is much different from that of the earlier aircraft. The air transport is now indispensable to our life. It is not so easy to control these matters. In the early part of 20th century, when the third parties suffered the damage, many European countries made laws on the basis of the principle of liability without fault. But each country had a variety of its own law, and different kinds of difficulties have been brought about. Accordingly, the Rome Convention on Surface Damage (1933, 1952, 1978) has been made and revised. In spite of being revised, it contains many problems, and is not carried into effect world-wide. On the other hand, there are no regulations about the compensation of the third parties damaged in Korean existing laws. In case the damage is brought about to them, it is obviously true that the settlement of the liability of compensation for damage should be made by the general principle on the tort in domestic laws. At this point, it is urgent that we make a special law though the domestic legislation as a preliminary measure before we sign the international convention to save third damaged. It is desirable that we should, for the responsibility of the air carriage for the demage of the third parties on the surface, bring in the theory of the absolute liability in view of the legislation of many conutries. As the aircraft fly in the sky, their flight always contains some danger. It is very difficult to prove the fault, and the operator should suffer the principle of liability without fault or the similiar one. In case the liability without fault will be imposed upon the operator for the damage of the third parties, it is necessary to bring in the liability protection system for the protection and up upbringing of the air carriage. The Burden of danger of the air carriage will be reduced by introducing the system. A domestic legislation measure should be necessarily taken as soon as possible as a legal security measure on these matters.

  • PDF