• 제목/요약/키워드: Flight Chamber

검색결과 46건 처리시간 0.028초

저압실 비행 훈련이 대한민국 공군 조종사의 혈액 성분에 미치는 영향 (Alterations in hematological parameters in Republic of Korea Air Force pilots during altitude chamber flight)

  • 김현수;전은령
    • 한국항공운항학회지
    • /
    • 제20권2호
    • /
    • pp.58-63
    • /
    • 2012
  • An altitude chamber, also known as a hypobaric chamber, is a device used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body. Although data from altitude chamber researches using experimental animals have been accumulated, studies in the humans exposed to hypobaric conditions are seldomly reported. Despite the importance of altitude chamber flight training in the field of aviation physiology, the hematological analysis of post-flight physiological changes has rarely been performed. The aims of the present study were to investigate the alterations in blood components during altitude chamber flight and to determine whether the differences between pre- and post-flight values are significant. Sixty experienced pilots in the Republic of Korea Air Force were enrolled in the altitude chamber flight training. Venous blood samples were obtained before and immediately after the flight. Compared with the pre-flight values($6.32{\times}10^3/mm^3$, $5.02{\times}10^6/mm^3$, 15.61 g/dL, respectively), white blood cell count, red blood cell count and hemoglobin level were significantly increased after the flight($6.77{\times}10^3/mm^3$, $5.44{\times}10^6/mm^3$, 16.26 g/dL; p=0.006, p=0.012, p<0.001, respectively). These alterations may be attributable to the exposure to hypobaric hypoxia, 100% oxygen supply for denitrogenation, considerable rise and fall in altitude and psychophysical stress due to these factors. In further studies, experimental groups and methods should be individualized to ensure objectivity and diversification. In addition, multiple time-frame analyses regarding the changing pattern of each blood component are also required to elucidate the physiological process for adapting to the high terrestrial altitude exposure.

가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰 (Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization)

  • 석현광
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.506-515
    • /
    • 2008
  • Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

고공 강하용 수직풍동의 개념설계에 관한 연구 (A Study on the Concept Design of Vertical Wind Tunnel for Skydiver)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes a case study on the design factor analysis of vertical wind tunnel for skydiver's training or experiencing of paradropping exercise in the air. The case study of vertical wind tunnel design is to provide the knowledges on effects of parameter's variation when it is applied to overall or partial duct of tunnel circuit. The analysis of design parameters based on pressure loss are produced one by one through the tunnel components from the flight chamber because the wind tunnel must satisfy the requirement of flight chamber such as flow speed, quality and quantity. Results shows the various effects of parameter variation with pressure loss in the wind tunnel circuit. Pressure loss should be based on the determination of fan and power system which can be selected from market or new design.

우주비행체 음향-진동 연성시험장치 개발 (Development of Vibro-acoustic Testing System for Space Flight Vehic1e)

  • 김홍배;문상무;우성현;이동우;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.96-102
    • /
    • 2001
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. Growing demand for satellites and launch vehicles in korea has resulted in a recent increase in the demand for high intensity vibro-acoustic test facility. The test facility is designed to provide an acoustic environment of 152 ㏈( re 20 ${\mu}$Pa) overall sound pressure level over the band width of 30 Hz to 10,000 Hz in the reverberant chamber. The reverberant chamber has a volume of 1,000 ㎥ with interior dimensions of 8.7m${\times}$l0m${\times}$12m, which can accommodate not only satellites but also launch vehicle payload fairing. Korea Aerospace Research Institute and Korean industries have been carrying out the development of the reverberant chamber and auxiliary devices, such as automatic control system, monitoring/safety device, and jet nozzle, etc. This paper presents the detailed description of High Intensity Acoustic Chamber of KARI, which will be the first and unique testing facility in Korea.

  • PDF

수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰 (A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter)

  • 허장욱;김찬동;장재상
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.526-532
    • /
    • 2015
  • 국내개발 헬기인 수리온의 악기상 시 운용능력을 입증하고 결빙하 운용 제한 사항을 해제하기 위하여 결빙 감항인증이 요구되고 있다. 군용헬기인 수리온의 결빙 감항인증 절차는 유사 무기체계인 UH-60과 AH-64의 사례와 S/W 기술의 성숙도를 보았을 때, 전산해석${\rightarrow}$모의결빙형상 비행시험${\rightarrow}$인공 결빙 비행시험${\rightarrow}$자연 결빙 비행시험의 4가지 방법에 의한 단계화된 추진이 고려되고 있다. 수리온의 최적 비행시험 소티와 비행시간은 인공 결빙 비행시험 20~30소티 및 20~23시간과 자연 결빙 비행시험 20~30소티 및 20~22시간이 요구되며, 효율적인 결빙 감항인증 비행시험을 위해서는 LWC $0.5{\sim}1.0g/m^3$범위의 대기온도 조건은 인공 결빙 비행시험을 추진하고, LWC $0.5g/m^3$이하의 대기온도 조건에서는 자연 결빙 비행시험이 필요하다.

통기성 향상을 위한 하계비행복 설계 및 착용쾌적성 평가 (Wearing Comfort Evaluation of a Summer Flight Suit to Improve Ventilation)

  • 전은진;박세권;유희천;김희은
    • 한국의류산업학회지
    • /
    • 제16권3호
    • /
    • pp.485-491
    • /
    • 2014
  • This study verified the effect of summer flight ventilation developed in a previous study based on wearing comfort evaluation. Seven healthy males in their twenties volunteered for this experiment conducted in aclimatic chamber. The experiment consisted of three consecutive periods of rest (20 minutes), running on a treadmill (10 minutes) and recovery (20 minutes). A comparative evaluation was conducted on the general flight suit which had no ventilation holes and summer flight suit that use subjective satisfaction measures and objective measures. The subjective satisfaction was evaluated according to the criteria of temperature sensation, wet sensation, thermal comfort and fatigue sensation. The objective satisfaction was measured by skin temperature, microclimate (temperature and humidity), sweat rate and thermography. The comparative wearing evaluation identified the summer flight suit decreased the temperature between skin and suit by $0.42^{\circ}C$ (upper arm), $0.9^{\circ}C$ (calf) and the skin temperature by $0.3^{\circ}C$ (shoulder), $0.4^{\circ}C$ (upper arm), $0.5^{\circ}C$ (calf) as compared to the general flight suit. The humidity inside the summer flight suit decreased at head (7.73%), shoulder (5.86%), upper arm (5.26%), and calf (8.73%) compared to the one inside the general flight suit. Thermography showed that the air flowed through ventilation holes (neck and armpit). The design of ventilation holes applied to the summer flight suit can be applicable to overall clothing that requires thermal comfort such as dust-free garments, mechanical clothing and combat uniforms.

정지궤도 위성의 열평형 시험 모델링 및 예비 예측 (THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

75톤급 재생냉각 연소기 기술검증용 시제 설계 및 제작 (Design and Fabrication of Technology Demonstration Model of 75 tonf Regenerative Cooling Thrust Chamber)

  • 김종규;안규복;임병직;김문기;강동혁;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.31-34
    • /
    • 2011
  • 75톤급 일체형 재생냉각 연소기 기술검증용 시제의 설계 및 제작에 대하여 기술하였다. 기술검증용 연소기의 설계 연소압력은 60 bar, 추진제 유량은 243.6 kg/s, 그리고 노즐 팽창비는 12이다. 헤드부와 추력실부가 용접되는 일체형 재생냉각형 연소기이다. 본 기술검증용 시제품을 통해 확립된 설계 및 제작 기술들은 비행용 모델 개발에 활용될 것이다.

  • PDF

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

스마트 무인기 흡기구 설계 및 성능해석

  • 정용운;전용민;양수석
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.197-207
    • /
    • 2004
  • 현재 개발중인 스마트 무인기는 일반적인 헬리콥터와 같이 수직이착륙이 가능할 뿐만 아니라 고정익기와 같이 고속의 비행이 가능함을 목표로 하고 있다. 그러므로 흡기구는 여러 비행조건에서 엔진이 제 효율을 낼 수 있도록 충분한 공기를 흡입하루 수 있어야 함은 물론이고 비행체의 운행속도에 따라서도 그 효율이 어느 이상 저하되지 않도록 설계되어야 한다. 본 논문에서는 고속 비행체에 적합한 pitot 형태와 엔진 특성에 따른 플레넘 챔버를 장착한 흡기구를 설계하였다. 그리고 CFD-ACE를 이용하여 설계된 흡기구의 성능 해석을 수행하였으며 엔진 내부에서의 swirl과 distortion을 조사하고 압력손실에 대해서 연구하였다.

  • PDF