• Title/Summary/Keyword: Flight Chamber

Search Result 46, Processing Time 0.021 seconds

Alterations in hematological parameters in Republic of Korea Air Force pilots during altitude chamber flight (저압실 비행 훈련이 대한민국 공군 조종사의 혈액 성분에 미치는 영향)

  • Kim, Hyun-Soo;Jeon, Eun-Ryoung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • An altitude chamber, also known as a hypobaric chamber, is a device used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body. Although data from altitude chamber researches using experimental animals have been accumulated, studies in the humans exposed to hypobaric conditions are seldomly reported. Despite the importance of altitude chamber flight training in the field of aviation physiology, the hematological analysis of post-flight physiological changes has rarely been performed. The aims of the present study were to investigate the alterations in blood components during altitude chamber flight and to determine whether the differences between pre- and post-flight values are significant. Sixty experienced pilots in the Republic of Korea Air Force were enrolled in the altitude chamber flight training. Venous blood samples were obtained before and immediately after the flight. Compared with the pre-flight values($6.32{\times}10^3/mm^3$, $5.02{\times}10^6/mm^3$, 15.61 g/dL, respectively), white blood cell count, red blood cell count and hemoglobin level were significantly increased after the flight($6.77{\times}10^3/mm^3$, $5.44{\times}10^6/mm^3$, 16.26 g/dL; p=0.006, p=0.012, p<0.001, respectively). These alterations may be attributable to the exposure to hypobaric hypoxia, 100% oxygen supply for denitrogenation, considerable rise and fall in altitude and psychophysical stress due to these factors. In further studies, experimental groups and methods should be individualized to ensure objectivity and diversification. In addition, multiple time-frame analyses regarding the changing pattern of each blood component are also required to elucidate the physiological process for adapting to the high terrestrial altitude exposure.

Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization (가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰)

  • Seok, Hyun Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.506-515
    • /
    • 2008
  • Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

A Study on the Concept Design of Vertical Wind Tunnel for Skydiver (고공 강하용 수직풍동의 개념설계에 관한 연구)

  • Cho, Hwan Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes a case study on the design factor analysis of vertical wind tunnel for skydiver's training or experiencing of paradropping exercise in the air. The case study of vertical wind tunnel design is to provide the knowledges on effects of parameter's variation when it is applied to overall or partial duct of tunnel circuit. The analysis of design parameters based on pressure loss are produced one by one through the tunnel components from the flight chamber because the wind tunnel must satisfy the requirement of flight chamber such as flow speed, quality and quantity. Results shows the various effects of parameter variation with pressure loss in the wind tunnel circuit. Pressure loss should be based on the determination of fan and power system which can be selected from market or new design.

Development of Vibro-acoustic Testing System for Space Flight Vehic1e (우주비행체 음향-진동 연성시험장치 개발)

  • 김홍배;문상무;우성현;이동우;이상설
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.96-102
    • /
    • 2001
  • High intensity vibro-acoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. Growing demand for satellites and launch vehicles in korea has resulted in a recent increase in the demand for high intensity vibro-acoustic test facility. The test facility is designed to provide an acoustic environment of 152 ㏈( re 20 ${\mu}$Pa) overall sound pressure level over the band width of 30 Hz to 10,000 Hz in the reverberant chamber. The reverberant chamber has a volume of 1,000 ㎥ with interior dimensions of 8.7m${\times}$l0m${\times}$12m, which can accommodate not only satellites but also launch vehicle payload fairing. Korea Aerospace Research Institute and Korean industries have been carrying out the development of the reverberant chamber and auxiliary devices, such as automatic control system, monitoring/safety device, and jet nozzle, etc. This paper presents the detailed description of High Intensity Acoustic Chamber of KARI, which will be the first and unique testing facility in Korea.

  • PDF

A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter (수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰)

  • Hur, Jang-Wook;Kim, Chan-Dong;Jang, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.526-532
    • /
    • 2015
  • In order to relieve limitation of flight operation under icing condition and verify its operation in adverse weather condition for Surion, military helicopter developed in Korea, airworthiness certification in icing condition is required. The process of Surion icing certification should be considered by implementation of four methods by step such as CFD analysis, simulated flight tests, artificial icing flight tests, and natural icing flight tests. For Surion icing flight tests, these are required 20~30 sorties and 20~23 hours in artificial icing condition; 20~30 sorties and 20~22 hours in natural icing condition. In addition, to proceed with efficient flight tests, it is necessary to implement artificial icing flight tests in LWC $0.5{\sim}1.0g/m^3;$ natural icing flight tests in less than LWC $0.5g/m^3$.

Wearing Comfort Evaluation of a Summer Flight Suit to Improve Ventilation (통기성 향상을 위한 하계비행복 설계 및 착용쾌적성 평가)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.485-491
    • /
    • 2014
  • This study verified the effect of summer flight ventilation developed in a previous study based on wearing comfort evaluation. Seven healthy males in their twenties volunteered for this experiment conducted in aclimatic chamber. The experiment consisted of three consecutive periods of rest (20 minutes), running on a treadmill (10 minutes) and recovery (20 minutes). A comparative evaluation was conducted on the general flight suit which had no ventilation holes and summer flight suit that use subjective satisfaction measures and objective measures. The subjective satisfaction was evaluated according to the criteria of temperature sensation, wet sensation, thermal comfort and fatigue sensation. The objective satisfaction was measured by skin temperature, microclimate (temperature and humidity), sweat rate and thermography. The comparative wearing evaluation identified the summer flight suit decreased the temperature between skin and suit by $0.42^{\circ}C$ (upper arm), $0.9^{\circ}C$ (calf) and the skin temperature by $0.3^{\circ}C$ (shoulder), $0.4^{\circ}C$ (upper arm), $0.5^{\circ}C$ (calf) as compared to the general flight suit. The humidity inside the summer flight suit decreased at head (7.73%), shoulder (5.86%), upper arm (5.26%), and calf (8.73%) compared to the one inside the general flight suit. Thermography showed that the air flowed through ventilation holes (neck and armpit). The design of ventilation holes applied to the summer flight suit can be applicable to overall clothing that requires thermal comfort such as dust-free garments, mechanical clothing and combat uniforms.

THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE (정지궤도 위성의 열평형 시험 모델링 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

Design and Fabrication of Technology Demonstration Model of 75 tonf Regenerative Cooling Thrust Chamber (75톤급 재생냉각 연소기 기술검증용 시제 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.31-34
    • /
    • 2011
  • Design and fabrication of Technology Demonstration Model(TDM) of 75 tonf regenerative cooling thrust chamber were described. It has design chamber pressure of 60 bar, propellant mass flow rate of 243.6 kg/s, and nozzle expansion ratio of 12. It has a single welded structure of the mixing head and the chamber. Design and fabrication technologies established through this TDM can be used to development of flight model.

  • PDF

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF