• Title/Summary/Keyword: Flight

Search Result 5,342, Processing Time 0.033 seconds

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

Comparing Energy Consumption following Flight Pattern for Quadrotor

  • Jee, Sunho;Cho, Hyunchan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.747-753
    • /
    • 2018
  • Currently, many companies have succeeded in logistics delivery experiments utilizing drone and report it. When a drone is used commercially, long-term flight is an important performance that a drone should have. However, unlike vehicles operated on the ground, drone is a vehicle that continues to consume energy when maintaining the current altitude or moving to the destination. Therefore, the drones can fly for a long time as the capacity of the battery is large, but the batteries with large capacity are restricted by heavy weight and it acts as a limiting factor in a commercial use. To address this issue, we attempt to compare how far we can fly than forward flight based on the flight pattern with the same energy consumption condition. In this paper, the comparison of energy consumption was performed in three flight pattern, forward flight without altitude change and forward flight with altitude change, by computer simulation and it shows the increasing of flight distances when the quadrotor fly with altitude change from high altitude to low altitude.

A Study on Flight Phobia and the Countermeasure (비행공포증과 대책에 관한 연구)

  • Ahn, Y.T.;Choi, Y.C.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • Because of globalization, flight trips are generalizing, however in proportion to this, it is increasing that people who afraid of riding an airplane because of flight phobia. ‘Flight Phobia’ is individual problem; however it can be factors to suspend of flight schedules. This research is experimental analyzed the recognition degree of flight attendants and cabin attendants about flight phobia and suggested the direction of management about related problems. This research examines meanwhile overlooked importance of flight phobia and the actual condition and if problems are happened, this research will be used valuable to manage quickly and safely.

  • PDF

3 Dimensional Augmented Reality Flight for Drones

  • Park, JunMan;Kang, KiBeom;Jwa, JeongWoo;Won, JoongHie
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2018
  • Drones are controlled by the remote pilot from the ground stations using the radio control or autonomously following the pre-programmed flight plans. In this paper, we develop a method and an optimal path search system for providing 3D augmented reality flight (ARF) images for safe and efficient flight control of drones. The developed system consisted of the drone, the ground station and user terminals, and the optimal path search server. We use the Dijkstra algorithm to find the optimal path considering the drone information, flight information, environmental information, and flight mission. We generate a 3D augmented reality flight (ARF) image overlaid with the path information as well as the drone information and the flight information on the flight image received from the drone. The ARF image for adjusting the drone is generated by overlaying route information, drone information, flight information, and the like on the image captured by the drone.

A Study on the Improvement of the Flight Simulation Training Device System (모의비행훈련장치 제도 개선방안 연구)

  • Kim, Se-jun;Cho, Young-jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.66-75
    • /
    • 2021
  • As the domestic aviation industry develops, demand for pilots is increasing. As a result, the demand for flight training using flight simulation training devices that implement the same or similar interior of aircraft is also increasing. Despite this increase in demand, domestic laws, regulations and management systems related to flight simulation training devices have remained unchanged since 2009. As a result, the criteria for designation of new or developed flight simulation training devices are ambiguous. In addition, proper improvement of the current system should be prioritized for designation of new devices such as UAM and VR, along with developing flight simulation training devices. It is intended to present measures to improve the domestic flight simulation training system by investigating and analyzing advanced cases overseas.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Analysis of Flight Performance and Efficiency according tothe Number of Consecutive Flight of Navy Pilots (해군 고정익조종사의 비행 훈련 주기에 따른 비행 효과 분석)

  • JungBong Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • In the case of the Navy, if some of the co-pilots are included in the long-term promotion process due to the limited number of co-pilots, operational flight and administrative tasks will be added to the co-pilots not included in the rest of the Pilot in commander process. Therefore, to solve this problem, the co-pilot who has passed the PQS step-by-step process minimizes the personnel gap in the flight operation unit through a system that evaluates whether it is possible to perform its duties as a co-pilot through actual flight after entering the school. The advantage of the PQS course is that you can control flight plans on your own and minimize gaps in flight and ground work while carrying out the curriculum, but you can't focus on education or improve your skills due to irregular training flight cycles. Therefore, in this study, after collecting opinions on effective flight cycles through a survey of pilots of P-3C, the Navy's fixed-wing aircraft representative, we will analyze the association of aircraft volume performance by flight cycle to derive the optimal flight cycle of the P-3C pilot course.

Effect of Job Stress on Job Satisfaction of Flight Instructors at Aviation Training Centers (전문교육기관 비행교관의 직무스트레스가 직무만족에 미치는 영향)

  • Yeonsung Kim;Moojin Kwon;Jang Ryong Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.4
    • /
    • pp.105-115
    • /
    • 2023
  • Flight instructors at aviation training centers are exposed to various stresses, such as stress caused by special work environments, stress caused by working conditions, and stress related to uncertain future airline employment. These stresses are expected to not only affect flight safety, but also adversely affect the job satisfaction of flight instructors, and consequently negatively affect the performance of high-quality flight education. Therefore, this study was conducted to understand the effects of these stresses on the job satisfaction of flight instructors by examining the stress experienced by flight instructors in flight, psychological, and physical aspects based on the results of previous studies on stress. To the end, this study conducted a survey of flight instructors belonging to aviation training centers, and as a result of analyzing the collected data, it was confirmed that the physical stress of flight instructors had a significant negative effect on their job satisfaction.

A Study on Standardization on the Flight Controller Mode in Remotely Piloted Aircraft Drone : Focused on Drone Controller Mode Preference (원격조종항공기 드론 조종기모드 표준화 연구 : 드론 조종기모드 선호도를 중심으로)

  • Park, Wontae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Remotely Piloted Aircraft (RPA) controls as a type of unmanned aerial vehicle (drone) is growing rapidly and its flight controller stick disposition is required standardization. We should standardize RPA drone flight control disposition because the flight pilot of RPA is hard to be trained so the flight controller stick differences impairs safety and wastes time and effort of flight controller industry. So this study researches the on-going standardization of RPA drone flight control disposition in Korea and foreign countries. Also this paper analyzes and researches of expert about RPA drone flight controller function and application of flight control mode. I accomplished expert research about standardization plan of unmanned flight control mode and confirm the necessity. Nowadays mode1 and 2 are mostly used in Korea so I carried out preference investigation for two modes. There were 4 preferences choices of RPA drone control mode necessity (importance) and recommendation of standardization modes. They answered that necessity of standardization is important considering pilot training, flight safety and positive development of drone industry. The result of standardization mode preference is that they prefer mode 2 (drone maker 86%, training facilities and research facilities 58%, government bureau 60%). Overall preference result shows that mode 1 24%, mode 1&2 16%, mode 2 60%. So they preferred mode 2 by 60%. The differences between two modes are the direction of throttle and pitch. Direction of throttle and pitch operate opposite way. They prefer mode 2 because mode 2 has similarities of manned flight control mode. Significance of this study is that it showed the necessity of standardization and flight control preference in a quantitative way. It will help drone standardization in related industries and development direction near future.

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF