• Title/Summary/Keyword: Flexure hinge

Search Result 128, Processing Time 0.032 seconds

A Study on the Design and Control of a Ultra-precision Stage (초정밀 스테이지 설계 및 제어에 관한 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 2006
  • The ultra-precision stage is demanded for some industrial fields such as semiconductor lithography, ultra-precision machining, and fabrication of nano structure. A new stage was developed for those applications in order to obtain nano meter resolution. This stage consists of symmetric double parallelogram mechanism using flexure hinges. The mechanical properties such as strength of the flexures and deformations along the applied force were analyzed using FEM. The stage is actuated by a piezoelectric actuator and its movement was measured by a ultra-precision linear encoder. In order to improve positioning performance, a PID controller was designed based on the identified second order transfer function. Experimental results showed that this stage could be positioned within below 5 nm resolution irrespective of hysteresis and creep by the controller.

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

I-section flange compactness under minor axis flexure

  • Aktas, M.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.335-351
    • /
    • 2006
  • The present paper hopes to elucidate the problem of determining if a given I-shaped cross-section is properly proportioned to accommodate sufficient plastic hinge rotation capacity to facilitate the redistribution of moments in a structural system as needed to accommodate the formation of a collapse mechanism. It might be tempting to believe that application of the limiting flange plate slenderness value for the case of major axis flexure are applicable in this case; since the pervasive belief is that this approach ought to be conservative. However, the present research study indicates that this is not the case and thus more sophisticated analysis techniques are required to better understand this case.

Robust Control for a Ultra-Precision Stage System (초정밀 스테이지의 강인 제어)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

Design of a 6-DOF Stage for Precision Positioning and Large Force Generation (정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계)

  • Shin, Hyun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.

A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography (접촉식 리소그라피의 정렬공정을 위한 압전구동 초정밀 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Lim, Hyung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.756-760
    • /
    • 2011
  • This paper proposed an alignment stage driven by piezo actuators for alignment process of a contact-type lithography. Among contact-type lithography processes, an UV-curable nanoimprint process is an unique process to be able to align patterns on upper and lower layers. An alignment stage of the UV-curable nanoimprint process requires nano-level resolution as well as high stiffness to overcome friction force due to contact moving. In this paper, the alignment stage consists of a compliant mechanism using flexure hinges, piezo actuators for high force generation, and capacitive sensors for high-resolution measurement. The compliant mechanism is implemented by four prismatic-prismatic compliant chains for two degree-of-freedom translations. The compliant mechanism is composed of flexure hinges with high stiffness, and it is directly actuated by the piezo actuators which increases the stiffness of the mechanism, also. The performance of the ultra-precision stage is demonstrated by experiments.

Seismic Performance Evaluation of Shear-Flexure RC Piers through Comparative test of Real Scale and Reduced Scale Model (실물 및 축소모형 비교실험을 통한 휨-전단 RC교각의 내진성능평가)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.849-854
    • /
    • 2002
  • From the analysis results of some as-built drawings in national roadway bridges in Korea, many bridge piers are expected to show complex shear-flexural behaviour under earthquakes. But the previous research works about the seismic evaluation of bridges considered flexural behaviour RC piers only. In addition, the past bridge design specifications in Korea didn't include limitation on the amount of longitudinal lap splices in the plastic hinge zone of piers. Thus a large majority of non-seismically designed bridge piers in Korea may have lap splices in plastic hinge zone. In this study, prototype pier was selected among existent bridge piers whose failure mode is expected to be complex shear-flexural mode. And then, full scale and 1/2 reduced scale model RC piers with various longitudinal lap splice details were constructed. From the quasi static test results on these model RC piers, the effect of longitudinal lap splices on the seismic performance of bridges piers was analyzed. And the seismic capacity of the non-seismically designed shear-flexural RC piers was evaluated.

  • PDF

Preliminary Study on Boundary Detailing of Structural Wall with Spirals (Spiral 철근 배근된 전단벽 단부의 내진성능 연구를 위한 예비 고찰)

  • 김록배;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.589-594
    • /
    • 2000
  • The necessary strength and ductility to avoid structural damage under moderate earthquake can be achieved by properly detailed transverse reinforcement in the plastic hinge zone. However, most structural walls have a higher aspect ratio(M/Vl\ulcorner) without well confined boundary regions. Therefore there is a need for adequate detailing in the plastic hinge zone, particularly boundary regions. In this paper, the fabricated interlocking spirals is introduced as a new seismic detailing for ductile behavior of the structural walls to be able to substitute for existing complicated detailing with ties. This paper also investigates the behavior characteristics of structural walls with interlocking spirals including confinement of the concrete and strength associated with flexure and shear.

  • PDF

Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator (병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석)

  • Kim, Eun-Seok;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.