• Title/Summary/Keyword: Flexural strain

Search Result 536, Processing Time 0.019 seconds

Study on Relationship of Flexural Moment-Curvature Based on Bond Property of Reinforced Concrete Member (철근콘크리트 부재의 부착특성을 고려한 휨모멘트-곡률 관계에 관한연구)

  • 장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The object of this study is to propose the Flexural moment-curvature relationship based on the bond property between concrete and steel for noncracking zone, to evaluate the flexural displacement of reinforced concrete member. The bond-slip relationship and the strain hardening effect of steel were taken into consideration in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double integrals of the equivalent curvature. Furthermore, 34 beams were tested in order to verify the proposed procedure Calculated values agreed well with the experimental data, and so it is pointed out that proposed method is widely acceptable for the practical evaluation of flexural displacement of reinforced concrete member.

Flexural Capacity of RC Composited H-Pile (철근콘크리트 합성 H-Pile의 휨성능)

  • Kim, Min-June;Shin, Geun-Ock;Jeong, Je-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.563-570
    • /
    • 2016
  • The composited structural member in which two or more materials having different stress-strain relationships (steel & concrete) has increased greatly in recent years. This paper presents the experimental results of flexural capacity of the composited H-Pile subjected to bending moment. Eight composited beams were tested under direct loading condition using the frame tester. Based on the experimental results it is noted that flexural capacity of composited H-Pile increased about 20~30% and ductility ratio significantly increased. Limit state analysis of the specimens was conducted and the result shows that flexural strength by limit state analysis is conservative.

Flexural behavior of retrofitted RC columns by FRP-MF, Experimental approach

  • Mahdavi, Navideh;Tasnimi, Abbas Ali
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Most of the recent studies have improved the efficiency of FRP jackets for increasing the compressive strength, shear strength, and ductility of reinforced concrete columns; however, the influence of FRP jackets on the flexural capacity is slight. Although new methods such as NSM (near surface mounted) are utilized to solve this problem, yet practical difficulties, behavior dependency on adhesives, and brittle failure necessitate finding better methods. This paper presents the results of an experimental study on the application of fiber-reinforced polymer fastened mechanically to the concrete columns to improve the flexural capacity of RC columns. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental program included five reinforced concrete columns retrofitted by different methods using FRP subjected to constant axial compression and lateral cyclic loading. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and good composite action of FRP and RC column was achieved. Moreover, the experimental results were compared with the results obtained from the analytical study based on strain compatibility, and good proximity was reached.

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 철근 콘크리트 보의 휨거동 평가)

  • Lee, Kwang-Myong;Seo, Jung-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2015
  • Cement zero concrete produced by alkali-activators and industrial by-products such as slag instead of cement, enables to solve the environmental pollution problems provoked by the exhaustion of natural resources and energy as well as the discharge of carbon dioxide. However, researches on the cement zero concrete are still limited to material studies and thus, study on the structural behavior of relevant members is essential to use the cement zero concrete as structural materials. This paper aims to evaluate experimentally and analytically the flexural behavior of RC beams using 50 MPa alkali activated slag concrete. To achieve such a goal, flexural tests on three types of RC beam specimens were conducted. A nonlinear analysis model is proposed using the modulus of elasticity and stress-strain relationship of alkali activated slag concrete. The analysis results obtained by the proposed model agree well with the experimental results, which could verify the validity of the proposed model.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Relation of Deflection of Prestressed Concrete Members to Unbonded Tendon Stress and Effects of Various Parameters (비부착 프리스트레스트 보강재를 갖는 PSC 부재의 변위와 프리스트레스트 보강재 응력의 상관관계 및 변수별 효과)

  • 문정호;임재형;이창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 2002
  • This paper is a part of research series for the verification of the proposed Moon/Lim design equation. An analytical study was performed to examine the relation between the flexural behavior and the unbonded tendon stress of PSC members. The strain compatibility assumption was used in this study since previous studies showed that the stress variations of tendon had a close relation with the member displacements. The proposed equation has been developed with the same assumption of strain compatibility. Therefore the analytical procedure with the strain compatibility assumption was developed to compute the member displacements of previous tests. Then the analytical results were compared with tests results. The comparison showed that the strain compatibility assumption can be properly applicable to the design equation. Based on the analytical results, the relation between the tendon stress and the member flexural behavior at ultimate was examined. A parametric study also carried out with regard to the member displacements. As results, the parameters used for the proposed equation were proven to be proper for the computation of tendon stress.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Ductility Capacity of Slender-Wind R/C Walls (긴 세장한 R/C 벽체의 연성능력)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.202-212
    • /
    • 2000
  • This study investigates the ductility capacity of slender-wide reinforced concrete walls under predominant flexural moment loading. The experimental work for this study aims to provide design guidelines for bar detailing in critical regions under compressive stress in particular in case of slender-wide RC walls. According to the experimental observation the Bernoulli hypothesis of linear strain distribution is no longer valid and the ultimate compressive strain of concrete is significantly reduced, It is postulated that the nonlinear strain distribution causes the concentrated compressive stressed region and hence the premature crushing failure at the toe of walls. The reduced ultimate strain and nonlinear strain distribution need transverse reinforcement for confinement and more realistic models for the strength and displacement estimation of slender-wide RC wall.

  • PDF

The Study on Flexural Behavior of Reinforced Concrete Beams Strengthened with the Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 R/C보의 휨 거동 연구)

  • 심종성;문도영;김영호;김동희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.611-616
    • /
    • 2002
  • The concrete beam is quickly required to be replaced or strengthened due to decreasing load carrying capacity. Flexural tests on 3.1m long reinforced concrete beams with carbon-fiber rod are reported. The selected experimental variable is the method of the anchoring beam. The effects of this variable in overall behavior are discussed. This paper considered relation of load-displacement and load-strain. The maximum load was increased to the static behavior of the R/C beam strengthened with CFR rod. The results indicated generally that the flexural strength of strengthening beam was increased. It was required a proper anchorage system and can be led the ductility of beams of a carbon-fiber rod.

  • PDF