• Title/Summary/Keyword: Flexural properties

Search Result 1,775, Processing Time 0.029 seconds

Fundamental Properties of Limestone Powder Added Cement Environment-friendly Concrete for Concrete Pavement (석회석미분말을 함유한 친환경 시멘트콘크리트의 도로포장 적용을 위한 기초 연구)

  • Choi, Woo-Hyeon;Park, Cheol-Woo;Jung, Won-Kyong;Kim, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-49
    • /
    • 2012
  • PURPOSES : This study is to investigate the fundamental properties of limestone added cement concrete for application of pavement. METHODS : As the production of Portland cement causes environmental problems, engineers have sought more environment-friendly concrete construction materials. Limestone powder can be used for concrete as a partial replacement of Portland cement. One of the great applications of limestone powder added cement concrete might be a cement concrete pavement since the concrete pavement consumes massive quantity of Portland cement. Experimental variables were different replacement level of limestone powder by 0% to 25% with 5% increment. Before hardening of fresh concrete, setting time and plastic shrinkage characteristics were investigated in addition to other basic properties. Properties of hardened concrete included compressive, tensile and flexural strength as well as drying shrinkage. RESULTS : The addition of limestone powder did not significantly affect the properties of fresh concrete. Strength deceased as the replacement ratio increased and when the replacement ratio was greater than 10% decrease rate increased. CONCLUSIONS : It was found that the partial replacement of the limestone powder to cement in pavement materials can be positively considered as its mechanical properties show comparable performance to those normal concrete.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

A COMPARATIVE STUDY BETWEEN DEGREE OF CONVERSION AND FLEXURAL STRENGTH OF COMPOSITE RESINS

  • Lee Seong-Hee;Pae Ahran;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.333-342
    • /
    • 2006
  • Statement of problem. Although many studies have been carried out to investigate the correlation between the degree of conversion and the flexural strength of composite resins, there is minimal information in the literature attempting to compare degree of conversion, flexural strength and their correlation between restorative composite resins and flowable composite resins. Purpose. The purposes of this study were to measure the degree of conversion and flexural strength of composite resins with different rheological behavior and to correlate the two properties. Materials and methods. Four restorative (Vit-1-escence, Z-250, Tetric ceram, Esthet-X) and four flowable (Aeliteflo, Admiraflow, Permaflo, Revolution) light-curing composite resins were investigated. The degree of conversion(DC) was analyzed with Fourier transfer infra-red spectroscopy(FTIR) spectrum by a potassium bromide(KBr) pellet transmission method. The spectrum of the unpolymerized specimen had been measured before the specimen was irradiated for 60s with a visible light curing unit. The Poiymerized specimen was scanned for its in spectrum. The flexural strength(FS) was measured with 3-point bending test according to ISO 4049 after storage in water at $37^{\circ}C$ for 24 hours. The data were statistically analyzed by an independent sample t-test and one-way ANOVA at the significance level of 0.05. The dependence of flexural strength on the degree of conversion was also analyzed by regression analysis. Results. Mean DC and FS values ranged from 43% to 61% and from 84.7MPa to 156.7MPa respectively. DC values of the flowable composite resins were significantly higher than those of restorative composite resins (P < 0.05). The FS values of restorative composite resins were greater than those of flowable composite resins. No statistically significant correlation was observed between the DC and the FS tested in any of the composites. The dependence of FS on DC in restorative or flowable composite resins was not significant. Conclusion. It can be concluded that radical polymerization of the organic matrix is not a major factor in determining flexural strength of the commercially available composite resins.

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Flexural Experiments on Reinforced Concrete Beams Strengthened with SHCC and Special Reinforcements (SHCC와 특수 보강근으로 보강된 철근콘크리트 보의 휨 성능 실험)

  • Chang-Jin Hyun;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2023
  • In this paper, we evaluated the flexural performance of three types of reinforced concrete beams (SHCC-RB, SHCC-SB, SHCC-FRP) strengthened with ordinary steel rebar, very high strength (super strength) rebar, and FRP bars together with strain-hardening cement composite (SHCC). For this purpose, a series of beam specimens were manufactured and four-point load bending experiments were performed. As a result of the experiment, all specimens strengthened with SHCC exhibited tightly controlled flexural microcrakcs with the crack width of less than 100 ㎛. This is mostly due to the material properties of SHCC showing tensile strain hardening properties with multiple microcracks under uniaxial tension. The specimen SHCC-FRP showed lower initial cracking moment and yield flexural strength than SHCC-RB, whereas the maximum flexural strength of SHCC-FRP was superior to that of SHCC-RC. This is because the tensile strength of FRP bars is higher than that of ordinary steel reabr. The initial cracking moment of the beam specimen SHCC-SB was similar to that of SHCC-RB, but the yield flexural strength and maximum flexural strength of SHCC-SB were evaluated to be the highest.

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

A Study on the Change of Optical and Mechanical Properties by Reprocessing for High Melt-Indexed Polycarbonate Used in Injection Molded Optical Parts (광학용 사출성형품에 사용되는 고유동성 폴리카보네이트의 재사용에 따른 광학적, 기계적 물성 변화에 대한 연구)

  • Lee, J.H.;Kang, J.J.;Yoon, K.H.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.211-221
    • /
    • 2018
  • To estimate the recycling feasibility of high melt-indexed polycarbonate, 3.5 inch LGP, tensile, flexural and impact specimens were injection-molded and the LGP was shredded into scraps. The scraps were injection-molded again and this process was repeated for 4 times. Properties of the sample, i.e., optical properties, mechanical properties and number average molecular weight were measured at each cycle. Based on the results, as the number of reprocessing increased, transmittance decreased at low wavelength and color coordinate was changed systematically to yellow. Yellow index increased more than twofold during 4 recycling processes. On the other hand, the number average molecular weight decreased during recycling processes. Flexural and impact strength showed no tendency according to the number of recycling, but tensile strength decreased sharply after the third recycling process. Based on these properties, it was concluded that the number of recycling for high melt-indexed polycarbonate allowed in this study was one.