• Title/Summary/Keyword: Flexural properties

Search Result 1,775, Processing Time 0.032 seconds

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

Comparison of mechanical properties of all ceramic crown on zirconia blocks (지르코니아 블록 종류에 따른 전부도재관의 기계적 특성 비교)

  • Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: This study provided the basic data for selecting the zirconia blocks by comparing the mechanical properties of the all ceramic crown between the domestic, import, translucent and shade blocks that were used in clinically. Methods: Currently, the most commercial block of five types(one import and two domestic block which is the translucent and shade) were used. It were elucidated by means of three point bending test, hardness test, FE-SEM observations and EDX analysis. The results were analyzed using a one-way ANOVA and Scheffe post hoc test for significant findings. Results: For flexural strength, LT specimen was the highest as 733.1 MPa, followed by JT specimen(712.0 MPa), ZT specimen(646.0 MPa), LS specimen(553.1 MPa), JS specimen(429.0 MPa). One-way ANOVA showed statistically significant difference between groups for flexural strength(p<0.05). For hardness, ZT specimen was the highest as 1556.5 Hv, followed by JT specimen(1540.3 Hv), LT specimen(1512.3 Hv), JS specimen(1472.0 Hv), LS specimen(1353.3 Hv). One-way ANOVA showed statistically significant difference between groups for hardness(p<0.05). Conclusion: Domestic block was higher than import block for flexural strength, and translucent block was higher than shade block for flexural strength. However, all blocks showed clinically acceptable range. There was no significant difference in hardness between domestic and import blocks. And significant difference was observed in translucent and shade blocks.

Influence of heating rate on the flexural strength of monolithic zirconia

  • Ozturk, Caner;Celik, Ersan
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.202-208
    • /
    • 2019
  • PURPOSE. Fabrication of zirconia restorations with ideal mechanical properties in a short period is a great challenge for clinicians. The purpose of the study was to investigate the effect of heating rate on the mechanical and microstructural properties of monolithic zirconia. MATERIALS AND METHODS. Forty monolithic zirconia specimens were prepared from presintered monolithic zirconia blanks. All specimens were then assigned to 4 groups according to heating rate as Control, Group $15^{\circ}C$, Group $20^{\circ}C$, and Group $40^{\circ}C$. All groups were sintered according to heating rates with the sintering temperature of $1500^{\circ}C$, a holding time of 90 minutes and natural cooling. The phase composition was examined by XRD analysis, three-point bending test was conducted to examine the flexural strength, and Weibull analysis was conducted to determine weibull modulus and characteristic strength. Average grain sizes were determined by SEM analysis. One-way ANOVA test was performed at a significance level of 0.05. RESULTS. Only tetragonal phase characteristic peaks were determined on the surface of analyzed specimens. Differences among the average grain sizes of the groups were not statistically significant. The results of the three-point bending test revealed no significant differences among the flexural strength of the groups (P>.05). Weibull modulus of groups was ranging from 3.50 to 4.74. The highest and the lowest characteristic strength values were obtained in Group $20^{\circ}C$ and Control Group, respectively. CONCLUSION. Heating rate has no significant effect on the flexural strength of monolithic zirconia. Monolithic zirconia restorations can be produced in shorter sintering periods without affecting the flexural strength by modifying the heating rate.

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber (폐PET섬유를 혼입한 시멘트모르터의 역학적 특성에 관한 연구)

  • 김영근;김상철;김명훈
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.77-86
    • /
    • 2002
  • In this study we intended to investigate properties of cement mortar with recycled PET fiber, PE fiber, and PP fiber such as slump flow, compressive strength, tensile strength, and flexural strength. As results of experiment, several properties of specimen with recycled PET fiber were little low comparing those of specimen with PE fiber and PP fiber. But if we see from point of economy and recycle of industrial wastes, it has enough reason to be used. Compressive strength of specimen with recycled PET fiber at 56 days was about 10% higher, but tensile strength and flexural strength were lower than that of no-fiber.

  • PDF

Study on Electrical and Mechanical Properties of High Viscosity Solid Epoxy / Silica and Alumina Composite (고점도형 고상에폭시/실리카와 알루미나 콤포지트의 전기적, 기계적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1330-1337
    • /
    • 2018
  • In this study, 40, 50, 60, and 70 wt% filler dispersed samples were prepared for the current GIS Spacer or environmentally friendly GIS. In the AC electrical breakdown, EMSC and EMAC decreased with increasing filler content, and EMSC showed better breakdown strength than EMAC. The mechanical properties such as tensile strength and flexural strength of EMSC and EMAC were also increased with increasing filler content. In addition, EMSC results in better mechanical properties than EMAC. The reason for this is considered to be one in which the influence of the interface is important.

Mechanical Properties of Carbon Fiber Reinforced Porous Concrete for Planting

  • Park Seung-Bum;Kim Jeong-Hwan
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2002
  • The mechanical properties of fiber reinforced porous concrete for use as a planting material were investigated in this study. Changes in physical and mechanical properties, subsequent to the addition of carbon fiber and silica fume, were studied. The effects of recycled aggregate were also evaluated. The applicability as planting work concrete material was also assessed. The results showed that there were no remarkable changes in the void and strength characteristics following the increase in proportion of recycled aggregate. Also, the mixture with 10% silica fume was found to be the most effective for strength enforcement. The highest flexural strength was obtained when the carbon fiber was added with $3\%$. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its usage for vegetation showed that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  • PDF