• Title/Summary/Keyword: Flexible tactile sensor

Search Result 53, Processing Time 0.025 seconds

Gesture recognition with wearable device based on deep learning (딥러닝 기반의 웨어러블 디바이스에서의 제스처 인식)

  • Byeon, Seong-U;Lee, Seok-Pil;Kim, Geon-Nyeon;Han, Sang-Hyeon
    • Broadcasting and Media Magazine
    • /
    • v.22 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • 본 연구는 비접촉식 센서 기반의 웨어러블 디바이스를 이용한 딥러닝 기반의 제스처 인식에 대한 연구이다. 이를 위하여 Flexible MSG 센서를 기반으로 한 Flexible Epidermal Tactile Sensor를 사용하였으며, Flexible Epidermal Tactile Sensor는 손, 손가락 제스처를 취했을 때 손목, 손가락과 연결되어 있는 근육들의 움직임에 따라 발생하는 피부 표면의 전극을 취득하는 센서이다. 실험을 위하여 7가지 손, 손가락 제스처를 정의하였으며, 손목의 꺾임, 손목의 뒤틀림, 손가락의 오므림과 펴짐, 아무 동작도 취하지 않은 기본 상태에 대한 제스처로 정의하였다. 실험 데이터 수집에는 손목이나 손가락에 부상, 장애등이 없는 일반적인 8명의 참가자가 참가하였으며 각각 한 제스처에 대하여 20번씩 반복하여 1120개의 샘플을 수집하였다. 입력신호에 대한 제스처를 학습하기 위해 본 논문에서는 1차원 Convolutional Neural Network를 제안하였으며, 성능 비교를 위해 신호의 크기를 반영하는 특징벡터인 Integral Absolute Value와 Difference Absolute Mean Value를 입력신호에서 추출하고 Support Vector Machine을 사용하여 본 논문에서 제안한 1차원 CNN과 성능비교를 하였다. 그 결과 본 논문에서 제안한 1차원 CNN의 분류 정확도가 우수한 성능을 나타냈다.

Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals (황동단자에 대한 인쇄형 유연촉각센서의 출력 특성)

  • Kim, Jindong;Bae, Yonghwan;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • While the demand for robots in the manufacturing industry has dramatically increased, the industrial robots' functionality is mainly determined by the effector attached to the end of their arms. They need a flexible gripping system that can act as a human hand and easily grasp a variety of objects, which requires resilient sensors. This study clarifies the electrical output characteristics of elastic tactile sensors according to contact terminals because the output characteristics of the tactile sensors vary greatly, depending on the contact material and the method of contact with the conductive wire. Our research considers the Three Roll Mill and Paste Mixer as the dispersion medium, and a nickel- and gold-plated brass electrode as the contact terminal.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

A Study on Design of Flexible Gripper for Unmanned FA (무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구)

  • Kim, Hyun-Gun;Kim, Gi-Bok;Kim, Tae-Kwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.

Robotic assembly of complicated flexible parts (산업용 로보트를 이용한 유연하고 형상이 복잡한 물체의 자동조립)

  • 권대갑;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.5-9
    • /
    • 1987
  • In this study, three insertion techniques vibration method, tactile sensor-assisted method and vision assisted method are developed for the insertion of electric contacts into connectors. In order to prove their Performances, a series of experiments were conducted for various shapes of el-ectric contacts. From the experimental results, three insertion methods are compared and their merits are discussed in detail.

  • PDF

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

Development and Application of Polymer-based Flexible Force Sensor Array (폴리머 재료를 이용한 유연 수직/수평 힘 센서 어레이 개발 및 응용)

  • Hwang, Eun-Soo;Yoon, Young-Ro;Yoon, Hyoung-Ro;Shin, Tae-Min;Kim, Yong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.142-149
    • /
    • 2009
  • This paper proposes and demonstrates novel flexible contact force sensing devices for 3-dimensional force measurement. To realize the sensor, polyimide and polydimethylsiloxane are used as a substrate, which makes it flexible. Thin-film metal strain gauges, which are incorporated into the polymer, are used for measuring the three-dimensional contact forces. The force sensor characteristics are evaluated against normal and shear load. The fabricated force sensor can measure normal loads up to 4N. The sensor output signals are saturated against load over 4N. Shear loads can be detected by different voltage drops in strain gauges. The device has no fragile structures; therefore, it can be used as a ground reaction force sensor for balance control in humanoid robots. Four force sensors are assembled and placed in the four corners of the robot's sole. By increasing bump dimensions, the force sensor can measure load up to 20N. When loads are exerted on the sole, the ground reaction force can be measured by these four sensors. The measured forces can be used in the balance control of biped locomotion system.

Tactile Sensing for Virtual Interaction as a Part of Ubiquitous Game Development (유비쿼터스게임의 상호작용 구성요소 개발을 위한 촉각응용)

  • Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1062-1068
    • /
    • 2007
  • In order to design and develop a ubiquitous game, it is necessary to develop a natural and flexible interface between the real world and the virtual world, based on social and physical context awareness. We design user interface model and the tactile sensing system that performs virtual interaction and collection of the sensor data. It is sensitive so the collected data should be filtered, rearranged and analyzed. This information is quite different from stylus input, keyboard, button or mouse for interaction. We detect kicked 3D force position of a ball, moment of area, moment of inertia and modified ball shape using tactile sensing system and analyzed data. The results demonstrate that the proposed approach is desirable and robust as well as the results can be used realistic actions and reactions considering attack force and to make interesting environments for ubiquitous game.